Aculeapyridones A-Q, Pyranopyridone Alkaloids with Protective Effects against Acetaminophen-Induced Acute Liver Injury Discovered from a Coculture of Aspergillus aculeatinus WHUF0198 and a Penicillium sp.
Wei-Chen Chen, Xin Song, Jun Wu, Yu-Ting Zhong, Philomina Panin Edjah, Qin-Yong Zhang, Mu Li, Kong-Kai Zhu, Congkui Tian, Rui-Ying Yuan, Xiao-Yan Wu, Ping Gao, Kui Hong*, Meng-Ke Zhang*, Jie Ping* and You-Sheng Cai*,
{"title":"Aculeapyridones A-Q, Pyranopyridone Alkaloids with Protective Effects against Acetaminophen-Induced Acute Liver Injury Discovered from a Coculture of Aspergillus aculeatinus WHUF0198 and a Penicillium sp.","authors":"Wei-Chen Chen, Xin Song, Jun Wu, Yu-Ting Zhong, Philomina Panin Edjah, Qin-Yong Zhang, Mu Li, Kong-Kai Zhu, Congkui Tian, Rui-Ying Yuan, Xiao-Yan Wu, Ping Gao, Kui Hong*, Meng-Ke Zhang*, Jie Ping* and You-Sheng Cai*, ","doi":"10.1021/acs.jnatprod.4c0104910.1021/acs.jnatprod.4c01049","DOIUrl":null,"url":null,"abstract":"<p >In the search for novel natural products with hepatoprotective effects against acetaminophen-induced acute liver injury, the marine-derived fungus <i>Aspergillus aculeatinus</i> WHUF0198 was investigated. Seventeen undescribed pyranopyridone alkaloids, aculeapyridones A–Q (<b>1</b>–<b>17</b>), were isolated by bioactivity-guided fractionation of an extract obtained by coculture of the <i>A. aculeatinus</i> WHUF0198 with the mangrove-associated fungus <i>Penicillium</i> sp. DM27. Notably, compounds <b>12</b>–<b>15</b>, which possessed a unique <i>N</i>-methoxy group, were identified as activation products of fungal coculture in liquid media. The structures and absolute configurations of these compounds were elucidated using a combination of universal spectroscopic techniques (NMR and HR-ESI-MS), ECD calculations, and single crystal X-ray diffraction analysis. All the isolated compounds, except <b>8</b> and <b>17</b>, were evaluated for their hepatoprotective activity against acetaminophen-induced acute liver injury <i>in vitro</i>. Compounds <b>1</b>–<b>7</b>, <b>9</b>, <b>10</b> and <b>12</b>–<b>15</b> increased cell viability and reduced alanine aminotransferase (ALT) levels of acetaminophen-induced murine hepatocytes at either 5 or 10 μM.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":"88 2","pages":"336–348 336–348"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jnatprod.4c01049","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the search for novel natural products with hepatoprotective effects against acetaminophen-induced acute liver injury, the marine-derived fungus Aspergillus aculeatinus WHUF0198 was investigated. Seventeen undescribed pyranopyridone alkaloids, aculeapyridones A–Q (1–17), were isolated by bioactivity-guided fractionation of an extract obtained by coculture of the A. aculeatinus WHUF0198 with the mangrove-associated fungus Penicillium sp. DM27. Notably, compounds 12–15, which possessed a unique N-methoxy group, were identified as activation products of fungal coculture in liquid media. The structures and absolute configurations of these compounds were elucidated using a combination of universal spectroscopic techniques (NMR and HR-ESI-MS), ECD calculations, and single crystal X-ray diffraction analysis. All the isolated compounds, except 8 and 17, were evaluated for their hepatoprotective activity against acetaminophen-induced acute liver injury in vitro. Compounds 1–7, 9, 10 and 12–15 increased cell viability and reduced alanine aminotransferase (ALT) levels of acetaminophen-induced murine hepatocytes at either 5 or 10 μM.
期刊介绍:
The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
When new compounds are reported, manuscripts describing their biological activity are much preferred.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.