Bing Xu, Ting Wang, Cunyi Zhao*, Jianyong Yu and Yang Si*,
{"title":"Self-Cross-Linked Carbon-Nanofiber-Based Aerogels for Infrared Stealth under Extreme Conditions","authors":"Bing Xu, Ting Wang, Cunyi Zhao*, Jianyong Yu and Yang Si*, ","doi":"10.1021/acsanm.4c0706110.1021/acsanm.4c07061","DOIUrl":null,"url":null,"abstract":"<p >With the rapid advancement of infrared detection technologies, the demand for high-performance infrared stealth materials capable of operating under extreme conditions has become urgent. Traditional low-emissivity coatings offer some degree of infrared stealth; however, they suffer from thermal shock and uneven heat distribution when exposed to harsh environments. This highlights the critical need to develop materials that not only ensure infrared stealth performance but also possess exceptional mechanical strength and thermal stability under extreme conditions. Here, inspired by the distinctive thermoregulatory layered skin structure of desert lizards, the thermomechanically stable and thermally insulating carbon nanofiber aerogels with a curled, interlocked, and self-cross-linked fibrous structure were designed through humidity-induced phase separation and self-cross-linking strategies. The aerogels demonstrate resilience with over 96% stress retention after 1000 cycles, with an energy dissipation factor as low as 0.31. Moreover, they maintain superelasticity under extreme conditions, offering exceptional mechanical stability and thermal shock resistance across temperatures from −50 to 200 °C. Furthermore, the aerogels boast a low thermal conductivity of 0.030 W·m<sup>–1</sup>·K<sup>–1</sup>. Drawing additional inspiration from the highly reflective scale structure of the desert lizard’s epidermis, we designed aluminum foil-carbon composite aerogels by affixing high-reflectivity aluminum foil papers to the surface of the carbon aerogels, resulting in a composite with low infrared emissivity (0.24). In both extreme-cold (−196 °C) and high-temperature (400 °C) environments, the composite aerogels exhibit outstanding infrared stealth performance, fully illustrating their potential for use in demanding conditions.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 8","pages":"4151–4158 4151–4158"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c07061","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid advancement of infrared detection technologies, the demand for high-performance infrared stealth materials capable of operating under extreme conditions has become urgent. Traditional low-emissivity coatings offer some degree of infrared stealth; however, they suffer from thermal shock and uneven heat distribution when exposed to harsh environments. This highlights the critical need to develop materials that not only ensure infrared stealth performance but also possess exceptional mechanical strength and thermal stability under extreme conditions. Here, inspired by the distinctive thermoregulatory layered skin structure of desert lizards, the thermomechanically stable and thermally insulating carbon nanofiber aerogels with a curled, interlocked, and self-cross-linked fibrous structure were designed through humidity-induced phase separation and self-cross-linking strategies. The aerogels demonstrate resilience with over 96% stress retention after 1000 cycles, with an energy dissipation factor as low as 0.31. Moreover, they maintain superelasticity under extreme conditions, offering exceptional mechanical stability and thermal shock resistance across temperatures from −50 to 200 °C. Furthermore, the aerogels boast a low thermal conductivity of 0.030 W·m–1·K–1. Drawing additional inspiration from the highly reflective scale structure of the desert lizard’s epidermis, we designed aluminum foil-carbon composite aerogels by affixing high-reflectivity aluminum foil papers to the surface of the carbon aerogels, resulting in a composite with low infrared emissivity (0.24). In both extreme-cold (−196 °C) and high-temperature (400 °C) environments, the composite aerogels exhibit outstanding infrared stealth performance, fully illustrating their potential for use in demanding conditions.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.