Role of the Capping Ligand in CsPbBr3 Nanocrystals Amplified Spontaneous Emission Properties

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2025-02-20 DOI:10.1021/acsanm.4c0679210.1021/acsanm.4c06792
Stefania Milanese, Maria Luisa De Giorgi*, Giovanni Morello, Maryna I. Bodnarchuk and Marco Anni, 
{"title":"Role of the Capping Ligand in CsPbBr3 Nanocrystals Amplified Spontaneous Emission Properties","authors":"Stefania Milanese,&nbsp;Maria Luisa De Giorgi*,&nbsp;Giovanni Morello,&nbsp;Maryna I. Bodnarchuk and Marco Anni,&nbsp;","doi":"10.1021/acsanm.4c0679210.1021/acsanm.4c06792","DOIUrl":null,"url":null,"abstract":"<p >Over the past decade, fully inorganic perovskite nanocrystals (NCs) have been proven to be efficient active materials for optoelectronic applications. The photoluminescence and stability properties of these nanostructures are demonstrated to be highly dependent on the surface chemistry and, specifically, on the surfactant molecules used to passivate the surface defects. Here, we present a study of the dependence of the amplified spontaneous emission (ASE) properties of CsPbBr<sub>3</sub> perovskite NC thin films, their photostability, and their sensitivity to ambient air on the NC capping ligand. In particular, in this work, four different samples have been analyzed, representatives of the three generations of capping ligands: oleic acid and oleylamine as the first generation, didodecyldimethylammonium bromide as the second generation, and 3-(<i>N</i>,<i>N</i>-dimethyloctadecylammonio)propanesulfonate (ASC18) and lecithin as the third generation. We discuss the different properties of quantum efficiency, optical gain, optical stability, and atmospheric sensing of NCs as a function of the four different ligands employed, focusing on the chemical–physical processes underlying the observed differences. We then establish the structures that ensure the best performances among the four studied physical characteristics. Among all of them, lecithin-capped NCs show the best performances in terms of ASE threshold and sensing. Our results could lay the groundwork for determining the optimal synthesis and processing conditions for perovskite NCs based on future technological applications.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 8","pages":"3964–3973 3964–3973"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsanm.4c06792","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c06792","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past decade, fully inorganic perovskite nanocrystals (NCs) have been proven to be efficient active materials for optoelectronic applications. The photoluminescence and stability properties of these nanostructures are demonstrated to be highly dependent on the surface chemistry and, specifically, on the surfactant molecules used to passivate the surface defects. Here, we present a study of the dependence of the amplified spontaneous emission (ASE) properties of CsPbBr3 perovskite NC thin films, their photostability, and their sensitivity to ambient air on the NC capping ligand. In particular, in this work, four different samples have been analyzed, representatives of the three generations of capping ligands: oleic acid and oleylamine as the first generation, didodecyldimethylammonium bromide as the second generation, and 3-(N,N-dimethyloctadecylammonio)propanesulfonate (ASC18) and lecithin as the third generation. We discuss the different properties of quantum efficiency, optical gain, optical stability, and atmospheric sensing of NCs as a function of the four different ligands employed, focusing on the chemical–physical processes underlying the observed differences. We then establish the structures that ensure the best performances among the four studied physical characteristics. Among all of them, lecithin-capped NCs show the best performances in terms of ASE threshold and sensing. Our results could lay the groundwork for determining the optimal synthesis and processing conditions for perovskite NCs based on future technological applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Forum Focused on South American Authors Issue Editorial Masthead Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1