Interaction of milk fat solidification and cheese cooling

IF 5.8 2区 农林科学 Q1 ENGINEERING, CHEMICAL Journal of Food Engineering Pub Date : 2025-02-21 DOI:10.1016/j.jfoodeng.2025.112531
R.G.M. van der Sman , I.A.F. van den Hoek , Y. Zhao
{"title":"Interaction of milk fat solidification and cheese cooling","authors":"R.G.M. van der Sman ,&nbsp;I.A.F. van den Hoek ,&nbsp;Y. Zhao","doi":"10.1016/j.jfoodeng.2025.112531","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we report on the interaction between cooling and fat crystallization, that happens during the processing of mozzarella cheese. The analysis is performed using a novel physical model in which the Fourier equation is extended with a source term representing the latent heat released by fat solidification. The kinetics of fat solidification follow a model originally developed for chocolate, which we have modified for milk fat, using input from our Differential Scanning Calorimeter (DSC) measurements of Mozzarella cheese samples. The model parameter estimation was conducted using a structured parameter estimation method involving the Fisher Information Matrix. The DSC analysis, and simulations, supplemented by mathematical scaling analysis, clearly show that a significant amount of latent heat is released, affecting the total cooling time and cooling rate. The interaction between cooling rate and crystallization is also bidirectional, as the cooling rate determines the types and amounts of fat crystal polymorphs formed.</div></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"395 ","pages":"Article 112531"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877425000664","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we report on the interaction between cooling and fat crystallization, that happens during the processing of mozzarella cheese. The analysis is performed using a novel physical model in which the Fourier equation is extended with a source term representing the latent heat released by fat solidification. The kinetics of fat solidification follow a model originally developed for chocolate, which we have modified for milk fat, using input from our Differential Scanning Calorimeter (DSC) measurements of Mozzarella cheese samples. The model parameter estimation was conducted using a structured parameter estimation method involving the Fisher Information Matrix. The DSC analysis, and simulations, supplemented by mathematical scaling analysis, clearly show that a significant amount of latent heat is released, affecting the total cooling time and cooling rate. The interaction between cooling rate and crystallization is also bidirectional, as the cooling rate determines the types and amounts of fat crystal polymorphs formed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乳脂凝固与奶酪冷却的相互作用
本文报道了在马苏里拉奶酪加工过程中,冷却与脂肪结晶之间的相互作用。分析是使用一种新的物理模型进行的,其中傅里叶方程被扩展为表示脂肪凝固释放的潜热的源项。脂肪凝固动力学遵循最初为巧克力开发的模型,我们对牛奶脂肪进行了修改,使用我们的差示扫描量热计(DSC)测量马苏里拉奶酪样品的输入。模型参数估计采用了包含Fisher信息矩阵的结构化参数估计方法。DSC分析和模拟,辅以数学标度分析,清楚地表明大量的潜热被释放,影响总冷却时间和冷却速度。冷却速率和结晶之间的相互作用也是双向的,因为冷却速率决定了形成的脂肪晶型的类型和数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Food Engineering
Journal of Food Engineering 工程技术-工程:化工
CiteScore
11.80
自引率
5.50%
发文量
275
审稿时长
24 days
期刊介绍: The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including: Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes. Accounts of food engineering achievements are of particular value.
期刊最新文献
Coaxial 3D printing of surimi-based composite fruit–vegetable gels A mean-field phase separation model enabling the coupling of non-isothermal flow phenomena with fibre formation in high-moisture extrusion of meat analogues Phosphatidylserine synthesis via bilayer PLD in pickering emulsion Effect of 12-HSA concentration on the physicochemical properties, stability, and curcumin bioavailability of ultrasound-assisted enzymatically glycosylated casein-stabilized oleogel-structured emulsions Development of a high-accuracy multilayer perceptron-based soft sensor for real-time monitoring of supersaturation and dry substance content in vacuum pan crystallization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1