Lijuan Zhang , Tianhang Zhang , Cong Wang , Wei Jin , Yin Li , Hao Wang , Changchun Ding , Zongyi Wang
{"title":"First-principles insight into SnS2/graphene heterostructure as potential anode materials for rechargeable lithium/sodium ion batteries","authors":"Lijuan Zhang , Tianhang Zhang , Cong Wang , Wei Jin , Yin Li , Hao Wang , Changchun Ding , Zongyi Wang","doi":"10.1016/j.chemphys.2025.112664","DOIUrl":null,"url":null,"abstract":"<div><div>The investigation of anode materials possessing stable capacity, outstanding electrical conductivity, and rapid ion transport is crucial for the advancement of lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). Previous research has demonstrated that graphene-based heterostructures display outstanding electrical conductivity, high mechanical rigidity, and specific capacity when utilized as anodes. In this work, we systematically investigated the use of SnS<sub>2</sub>/graphene (SnS<sub>2</sub>/G) heterostructure as anode materials for LIBs and SIBs through first-principles calculations. The resultsindicate that, in comparison with the monolayer SnS<sub>2</sub>, the SnS<sub>2</sub>/G heterojunction demonstrates metallic characteristics and enhanced electrical conductivity. It also exhibits excellent Li and Na adsorption capacity, low ion migration barriers, and low open circuit voltage. The Na storage capacity of the SnS<sub>2</sub>/G heterojunction is 481.78 mAh/g, surpassing that of other common anodes. Moreover, the structure of Na embedding process remains stable, rendering it suitable for application as a high-performance anode material for SIBs.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"594 ","pages":"Article 112664"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425000655","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The investigation of anode materials possessing stable capacity, outstanding electrical conductivity, and rapid ion transport is crucial for the advancement of lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). Previous research has demonstrated that graphene-based heterostructures display outstanding electrical conductivity, high mechanical rigidity, and specific capacity when utilized as anodes. In this work, we systematically investigated the use of SnS2/graphene (SnS2/G) heterostructure as anode materials for LIBs and SIBs through first-principles calculations. The resultsindicate that, in comparison with the monolayer SnS2, the SnS2/G heterojunction demonstrates metallic characteristics and enhanced electrical conductivity. It also exhibits excellent Li and Na adsorption capacity, low ion migration barriers, and low open circuit voltage. The Na storage capacity of the SnS2/G heterojunction is 481.78 mAh/g, surpassing that of other common anodes. Moreover, the structure of Na embedding process remains stable, rendering it suitable for application as a high-performance anode material for SIBs.
期刊介绍:
Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.