Quantitative reconstruction of Holocene hydroclimate changes in northeastern China and implications for East Asian monsoon dynamics

IF 2.6 2区 地球科学 Q2 GEOGRAPHY, PHYSICAL Palaeogeography, Palaeoclimatology, Palaeoecology Pub Date : 2025-02-23 DOI:10.1016/j.palaeo.2025.112833
Shi-Yong Yu, Runzhe Xu
{"title":"Quantitative reconstruction of Holocene hydroclimate changes in northeastern China and implications for East Asian monsoon dynamics","authors":"Shi-Yong Yu,&nbsp;Runzhe Xu","doi":"10.1016/j.palaeo.2025.112833","DOIUrl":null,"url":null,"abstract":"<div><div>The pattern of Holocene climate change remains unclear due to unresolved issues such as the “temperature conundrum” and the uncertain relationship between temperature and precipitation, particularly in monsoonal regions. Variability in regional climate drivers, including changes in ice volume, atmospheric circulation, and monsoon dynamics, further complicates Holocene climate dynamics, leading to spatially and temporally heterogeneous climate responses. As a result, reconstructing the precise timing, magnitude, and drivers of Holocene climate change remains challenging, requiring more detailed data and advanced statistical methods. In this study, we present a quantitative reconstruction of Holocene hydroclimate changes in northeastern China through a data-model fusion approach. By integrating water chemistry data from ostracod shells in a closed-basin lake with a hydrological balance model, we estimate growing-season temperature anomalies and relative lake-level changes during the Holocene. Our results highlight a mid-Holocene hydrological peak corresponding to the Holocene Thermal Maximum in the region. This peak lagged behind the early-Holocene summer insolation maximum, likely due to the influence of remnant ice sheets in the Northern Hemisphere. A comparison of our relative lake-level record with data of regional pollen-based precipitation reconstructions and TraCE-21 k modeling reveals a consistent pattern of increased monsoonal rainfall during the middle Holocene, followed by a steady decline after 5 kyr BP, reflecting a weakening of the East Asian summer monsoon. Additionally, our EOF analyses identify an early-Holocene tripolar precipitation pattern, which reversed in the middle Holocene, driven by shifts in atmospheric circulation. These findings advance our understanding of Holocene climate variability and offer insights for future climate predictions in monsoonal regions.</div></div>","PeriodicalId":19928,"journal":{"name":"Palaeogeography, Palaeoclimatology, Palaeoecology","volume":"666 ","pages":"Article 112833"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Palaeogeography, Palaeoclimatology, Palaeoecology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003101822500118X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The pattern of Holocene climate change remains unclear due to unresolved issues such as the “temperature conundrum” and the uncertain relationship between temperature and precipitation, particularly in monsoonal regions. Variability in regional climate drivers, including changes in ice volume, atmospheric circulation, and monsoon dynamics, further complicates Holocene climate dynamics, leading to spatially and temporally heterogeneous climate responses. As a result, reconstructing the precise timing, magnitude, and drivers of Holocene climate change remains challenging, requiring more detailed data and advanced statistical methods. In this study, we present a quantitative reconstruction of Holocene hydroclimate changes in northeastern China through a data-model fusion approach. By integrating water chemistry data from ostracod shells in a closed-basin lake with a hydrological balance model, we estimate growing-season temperature anomalies and relative lake-level changes during the Holocene. Our results highlight a mid-Holocene hydrological peak corresponding to the Holocene Thermal Maximum in the region. This peak lagged behind the early-Holocene summer insolation maximum, likely due to the influence of remnant ice sheets in the Northern Hemisphere. A comparison of our relative lake-level record with data of regional pollen-based precipitation reconstructions and TraCE-21 k modeling reveals a consistent pattern of increased monsoonal rainfall during the middle Holocene, followed by a steady decline after 5 kyr BP, reflecting a weakening of the East Asian summer monsoon. Additionally, our EOF analyses identify an early-Holocene tripolar precipitation pattern, which reversed in the middle Holocene, driven by shifts in atmospheric circulation. These findings advance our understanding of Holocene climate variability and offer insights for future climate predictions in monsoonal regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
10.00%
发文量
398
审稿时长
3.8 months
期刊介绍: Palaeogeography, Palaeoclimatology, Palaeoecology is an international medium for the publication of high quality and multidisciplinary, original studies and comprehensive reviews in the field of palaeo-environmental geology. The journal aims at bringing together data with global implications from research in the many different disciplines involved in palaeo-environmental investigations. By cutting across the boundaries of established sciences, it provides an interdisciplinary forum where issues of general interest can be discussed.
期刊最新文献
Editorial Board Upper Jurassic benthic foraminiferal assemblages of the Charentes-Maritimes region (Atlantic Coast, France) and their answer to climate changes Comment on “Uppermost Permian to Lower Triassic conodont biostratigraphy and carbon isotope records from Southern Armenia” by Chen Han et al. [Palaeogeography, Palaeoclimatology, Palaeoecology, 667 (2025), 112,870] The effectiveness of oxygen isotopes in Spinosaurus tooth dentine for high-resolution palaeoenvironmental reconstructions Evolution of denudation during the growth of a thrust-fold range: A case study from the Yumu Shan, NE Tibetan Plateau
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1