Analysis on time-frequency characteristics and construction response of microseismic events on high and steep rock slopes: A case study of Dongzhuang Water Conservancy Project

IF 6.7 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Tunnelling and Underground Space Technology Pub Date : 2025-02-27 DOI:10.1016/j.tust.2025.106499
Ke Ma , Haiyang Liu , Kaikai Wang , Di Wu
{"title":"Analysis on time-frequency characteristics and construction response of microseismic events on high and steep rock slopes: A case study of Dongzhuang Water Conservancy Project","authors":"Ke Ma ,&nbsp;Haiyang Liu ,&nbsp;Kaikai Wang ,&nbsp;Di Wu","doi":"10.1016/j.tust.2025.106499","DOIUrl":null,"url":null,"abstract":"<div><div>The right bank slope of the Dongzhuang Water Conservancy Project is steep and high, with numerous dissolution cavities and mud-filled cracks forming reasonably well in the solid limestone, complicating the geological conditions and emphasizing the slope stability issue. To clarify the activation characteristics of various weak structural planes in the rock mass of the right bank slope under the influence of geological defect treatment and high-pressure grouting disturbance and to evaluate the overall stability of the slope, a real-time monitoring system for micro-seismic activity in both the deep and shallow parts of the slope rock mass was used, combining core drilling and colored borehole television technology. A generalized β wavelet high-resolution time-frequency transformation algorithm was used to analyze the dynamic micro-seismic response and damage characteristics of the slope rock mass under different engineering disturbances. The results reveal that: (1) The rock mass on the right bank slope deteriorates as a result of limestone breakdown and local mineral infill, while its plastic properties improve. Microseismic events have an amplitude of 0.06 mV and low energy, and their frequency is primarily focused between 100 and 300 Hz, with low-frequency vibrations dominating. (2) During drilling disruption, the micro-fractures on both sides and the deeper areas of the Rnj3 dissolution-mud-filled fracture become much stronger than before drilling. The lateral fracture surface of the Rnj3 dissolution-mud-filled fracture and the bottom slip surface of the L61 fracture have a weak temporal and spatial link during micro-crack development, and the energy release level is low. As the microseismic activity of the downstream L61 fracture reduces, the prospective sliding body’s slip risk is reduced. (3) During the early grouting stage, the high-pressure slurry washed out the muck from the mud-filled fracture. This caused localized dislocation instability of the neighboring rock mass, resulting in micro-seismic event clusters scattered along the fracture zone. After grouting, there were fewer micro-seismic events at an elevation at a height at the Rnj3 mud-filled crack, indicating low rock mass activity. By the middle of grouting, the formation of microseismic events has stopped, and the surrounding rock was stable under the consolidating impact of the grout. The findings serve as a key guide for curtain grouting reinforcement of steep slopes and other comparable projects.</div></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":"159 ","pages":"Article 106499"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779825001373","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The right bank slope of the Dongzhuang Water Conservancy Project is steep and high, with numerous dissolution cavities and mud-filled cracks forming reasonably well in the solid limestone, complicating the geological conditions and emphasizing the slope stability issue. To clarify the activation characteristics of various weak structural planes in the rock mass of the right bank slope under the influence of geological defect treatment and high-pressure grouting disturbance and to evaluate the overall stability of the slope, a real-time monitoring system for micro-seismic activity in both the deep and shallow parts of the slope rock mass was used, combining core drilling and colored borehole television technology. A generalized β wavelet high-resolution time-frequency transformation algorithm was used to analyze the dynamic micro-seismic response and damage characteristics of the slope rock mass under different engineering disturbances. The results reveal that: (1) The rock mass on the right bank slope deteriorates as a result of limestone breakdown and local mineral infill, while its plastic properties improve. Microseismic events have an amplitude of 0.06 mV and low energy, and their frequency is primarily focused between 100 and 300 Hz, with low-frequency vibrations dominating. (2) During drilling disruption, the micro-fractures on both sides and the deeper areas of the Rnj3 dissolution-mud-filled fracture become much stronger than before drilling. The lateral fracture surface of the Rnj3 dissolution-mud-filled fracture and the bottom slip surface of the L61 fracture have a weak temporal and spatial link during micro-crack development, and the energy release level is low. As the microseismic activity of the downstream L61 fracture reduces, the prospective sliding body’s slip risk is reduced. (3) During the early grouting stage, the high-pressure slurry washed out the muck from the mud-filled fracture. This caused localized dislocation instability of the neighboring rock mass, resulting in micro-seismic event clusters scattered along the fracture zone. After grouting, there were fewer micro-seismic events at an elevation at a height at the Rnj3 mud-filled crack, indicating low rock mass activity. By the middle of grouting, the formation of microseismic events has stopped, and the surrounding rock was stable under the consolidating impact of the grout. The findings serve as a key guide for curtain grouting reinforcement of steep slopes and other comparable projects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Tunnelling and Underground Space Technology
Tunnelling and Underground Space Technology 工程技术-工程:土木
CiteScore
11.90
自引率
18.80%
发文量
454
审稿时长
10.8 months
期刊介绍: Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.
期刊最新文献
Influence of subway train load on seismic response of twin stacked tunnels using three-directional shaking table test in sand Analytical solutions for safety performance of bell-spigot jointed ductile iron pipelines under various normal fault-pipe crossing positions Study on rockburst control of deep-buried tunnel by combining advanced stress release borehole and hydraulic fracturing Experimental analysis of the failure modes and precursors of surrounding rocks in 3D-printed tunnels with rough fractures: Insights into the influence of excavation shapes Study on different influence factors of in-situ stress unloading by dynamic excavation in circular tunnel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1