Mary Arnhart , Rachel K. Surowiec , Matthew R. Allen , Joseph M. Wallace , Laura J. Pyrak-Nolte , John Howarter , Thomas Siegmund
{"title":"A measure of intrinsic strength, not nominal strength, reflects effects of ex-vivo cortical bone matrix modulation by raloxifene","authors":"Mary Arnhart , Rachel K. Surowiec , Matthew R. Allen , Joseph M. Wallace , Laura J. Pyrak-Nolte , John Howarter , Thomas Siegmund","doi":"10.1016/j.jmbbm.2025.106956","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding bone strength is important when assessing bone diseases and their treatment. Bending experiments are often used to determine strength. Then, flexural stresses are calculated from elastic bending theory. With a brittle failure criterion, the maximum flexural tensile stress is equated to (nominal) strength. However, bone is not a perfectly brittle material. A quasi-brittle failure criterion is more appropriate. Such an approach allows for material failure to occur before full fracture. The extent of the subcritical damage domain then introduces a length scale. The intrinsic strength of the bone is calculated from the critical load at fracture and the failure process zone dimensions relative to the specimen size. We apply this approach to human cortical bone specimens extracted from a femur. We determine strength measures in the untreated reference state and after treatment with the selective estrogen receptor modulator raloxifene. We find that the common nominal strength measure does not distinguish between treatments. However, the dimensions of the failure process zone differ between treatments. Intrinsic strength measures then are demonstrated as descriptors of bone strength sensitive to treatment. An extrapolation of laboratory data to whole bone is demonstrated.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"166 ","pages":"Article 106956"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616125000724","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding bone strength is important when assessing bone diseases and their treatment. Bending experiments are often used to determine strength. Then, flexural stresses are calculated from elastic bending theory. With a brittle failure criterion, the maximum flexural tensile stress is equated to (nominal) strength. However, bone is not a perfectly brittle material. A quasi-brittle failure criterion is more appropriate. Such an approach allows for material failure to occur before full fracture. The extent of the subcritical damage domain then introduces a length scale. The intrinsic strength of the bone is calculated from the critical load at fracture and the failure process zone dimensions relative to the specimen size. We apply this approach to human cortical bone specimens extracted from a femur. We determine strength measures in the untreated reference state and after treatment with the selective estrogen receptor modulator raloxifene. We find that the common nominal strength measure does not distinguish between treatments. However, the dimensions of the failure process zone differ between treatments. Intrinsic strength measures then are demonstrated as descriptors of bone strength sensitive to treatment. An extrapolation of laboratory data to whole bone is demonstrated.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.