Mei Zhang , Xue Kong , Chenlu Wu , Jiuhong Li , Hui Yang , Lingzhi Huang
{"title":"The role of lactate and lactylation in ischemic cardiomyopathy: Mechanisms and gene expression","authors":"Mei Zhang , Xue Kong , Chenlu Wu , Jiuhong Li , Hui Yang , Lingzhi Huang","doi":"10.1016/j.yexmp.2025.104957","DOIUrl":null,"url":null,"abstract":"<div><div>Ischemic cardiomyopathy (ICM) is a significant global public health issue, with its pathophysiology encompassing atherosclerotic plaque formation, thrombosis, hypoperfusion, ischemic cell death, and left ventricular remodeling. Lactate is not only regarded as an energy metabolite but also acts as a signaling molecule that influences various physiological processes, regulating metabolism and muscle contraction. Lactylation, an emerging epigenetic modification, affects protein functionality and gene expression through the P300 enzyme. In ICM, lactate accumulation leads to pH imbalance and myocardial cell dysfunction, impacting cellular signaling. This paper will analyze the role of lactylation in ICM, focusing on coronary artery disease (ASCVD) and myocardial infarction (MI). It will also explore the differential expression and immunological characteristics of lactylation-related genes in normal and ICM tissues, providing potential targets for future research.</div></div>","PeriodicalId":12176,"journal":{"name":"Experimental and molecular pathology","volume":"141 ","pages":"Article 104957"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and molecular pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014480025000061","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ischemic cardiomyopathy (ICM) is a significant global public health issue, with its pathophysiology encompassing atherosclerotic plaque formation, thrombosis, hypoperfusion, ischemic cell death, and left ventricular remodeling. Lactate is not only regarded as an energy metabolite but also acts as a signaling molecule that influences various physiological processes, regulating metabolism and muscle contraction. Lactylation, an emerging epigenetic modification, affects protein functionality and gene expression through the P300 enzyme. In ICM, lactate accumulation leads to pH imbalance and myocardial cell dysfunction, impacting cellular signaling. This paper will analyze the role of lactylation in ICM, focusing on coronary artery disease (ASCVD) and myocardial infarction (MI). It will also explore the differential expression and immunological characteristics of lactylation-related genes in normal and ICM tissues, providing potential targets for future research.
期刊介绍:
Under new editorial leadership, Experimental and Molecular Pathology presents original articles on disease processes in relation to structural and biochemical alterations in mammalian tissues and fluids and on the application of newer techniques of molecular biology to problems of pathology in humans and other animals. The journal also publishes selected interpretive synthesis reviews by bench level investigators working at the "cutting edge" of contemporary research in pathology. In addition, special thematic issues present original research reports that unravel some of Nature''s most jealously guarded secrets on the pathologic basis of disease.
Research Areas include: Stem cells; Neoangiogenesis; Molecular diagnostics; Polymerase chain reaction; In situ hybridization; DNA sequencing; Cell receptors; Carcinogenesis; Pathobiology of neoplasia; Complex infectious diseases; Transplantation; Cytokines; Flow cytomeric analysis; Inflammation; Cellular injury; Immunology and hypersensitivity; Athersclerosis.