Binary classification with Fuzzy-Bayesian logistic regression using Gaussian fuzzy numbers

Georgios Charizanos , Haydar Demirhan , Duygu İçen
{"title":"Binary classification with Fuzzy-Bayesian logistic regression using Gaussian fuzzy numbers","authors":"Georgios Charizanos ,&nbsp;Haydar Demirhan ,&nbsp;Duygu İçen","doi":"10.1016/j.iswa.2025.200494","DOIUrl":null,"url":null,"abstract":"<div><div>Binary classification is a critical task in pattern recognition applications in artificial intelligence and machine learning. The main weakness of binary classifiers is their sensitivity towards the imbalance in the number of observations in the binary classes and separation by a subset of features. Although various robust approaches are introduced against these issues, they need prolonged runtimes, limiting their applicability in artificial intelligence applications or for large datasets. In this study, we introduce a new binary classification framework called the fuzzy-Bayesian logistic regression, which incorporates robust Bayesian logistic regression with fuzzy classification using Gaussian fuzzy numbers. The proposed method improves classification performance while providing significant gains in computation time. We benchmark the proposed method with eight fuzzy, Bayesian, and machine learning classifiers using seventeen datasets. The results indicate that the fuzzy-Bayesian logistic regression outperforms all benchmark methods across all datasets in terms of six performance indicators. Moreover, the proposed method is shown to be significantly more efficient than its closest competitor, improving computational efficiency. The proposed method provides a promising binary classifier for a wide range of applications with its computational efficiency and robustness towards imbalance and separation issues in the data.</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"26 ","pages":"Article 200494"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305325000201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Binary classification is a critical task in pattern recognition applications in artificial intelligence and machine learning. The main weakness of binary classifiers is their sensitivity towards the imbalance in the number of observations in the binary classes and separation by a subset of features. Although various robust approaches are introduced against these issues, they need prolonged runtimes, limiting their applicability in artificial intelligence applications or for large datasets. In this study, we introduce a new binary classification framework called the fuzzy-Bayesian logistic regression, which incorporates robust Bayesian logistic regression with fuzzy classification using Gaussian fuzzy numbers. The proposed method improves classification performance while providing significant gains in computation time. We benchmark the proposed method with eight fuzzy, Bayesian, and machine learning classifiers using seventeen datasets. The results indicate that the fuzzy-Bayesian logistic regression outperforms all benchmark methods across all datasets in terms of six performance indicators. Moreover, the proposed method is shown to be significantly more efficient than its closest competitor, improving computational efficiency. The proposed method provides a promising binary classifier for a wide range of applications with its computational efficiency and robustness towards imbalance and separation issues in the data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
期刊最新文献
A unified prompt-based framework for few-shot multimodal language analysis A comprehensive fusion model for improved pneumonia prediction based on KNN-wavelet-GLCM and a residual network Emulating fundamental analysts: Analytical stage-based multi-agent framework enhanced with expert guidance and Preference-Anchored Likelihood Adjustment Multi-Agent Reinforcement Learning for Cybersecurity: Classification and survey Binary classification with Fuzzy-Bayesian logistic regression using Gaussian fuzzy numbers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1