Review of quantitative microbial risk assessments for potable water reuse†

IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Science: Water Research & Technology Pub Date : 2025-01-03 DOI:10.1039/D4EW00661E
Emily Clements, Charlotte van der Nagel, Katherine Crank, Deena Hannoun and Daniel Gerrity
{"title":"Review of quantitative microbial risk assessments for potable water reuse†","authors":"Emily Clements, Charlotte van der Nagel, Katherine Crank, Deena Hannoun and Daniel Gerrity","doi":"10.1039/D4EW00661E","DOIUrl":null,"url":null,"abstract":"<p >Potable water reuse is becoming more common as communities deal with increased water demands and climate change. Understanding the risks associated with potable reuse is essential to ensuring that public health is protected from waterborne pathogens. This paper provides a review on the studies that have performed quantitative microbial risk assessments (QMRAs) on potable reuse. The 30 articles included here studied direct potable reuse (DPR), indirect potable reuse (IPR), and/or <em>de facto</em> reuse (DFR), and a variety of pathogens, including norovirus, adenovirus, <em>Cryptosporidium</em>, <em>Giardia</em>, <em>Campylobacter</em>, and <em>Salmonella</em>. The QMRAs were either ‘top-down’ or regulations-focused, where log reduction targets (LRTs) were determined based on initial (<em>e.g.</em>, raw wastewater) pathogen concentrations and risk goals (<em>e.g.</em>, 10<small><sup>−4</sup></small> annual risk benchmark), or ‘bottom-up’ or risk-estimation-focused, where risks were calculated based on known pathogen concentrations and observed/credited log reduction values (LRVs). Some studies incorporated process failures and pathogen decay, which were often a driving factor for risk, but several studies omitted one or both. Many studies compared multiple treatment trains (<em>e.g.</em>, carbon-based advanced treatment (CBAT) <em>vs.</em> reverse-osmosis-based advanced treatment (RBAT)). They found that treatment-based differences were pathogen-dependent because certain processes are better able to inactivate or remove certain pathogens. Many factors influence the risks reported in the various studies, including the assumed ratios of gene copies to infectious units (GC : IU), assumptions related to ingestion volume and frequency, dynamic <em>vs.</em> static modeling, and Bayesian approaches. The LRTs for the top-down QMRAs varied within and between studies, depending partially on the pathogen concentrations used and whether redundancy was included. The key findings from this review were that while QMRAs often have different goals warranting different assumptions, it is essential that researchers report these assumptions and their justifications so that policymakers and regulators fully understand their implications to avoid overly stringent or nonprotective regulations.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 3","pages":" 542-559"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ew/d4ew00661e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ew/d4ew00661e","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Potable water reuse is becoming more common as communities deal with increased water demands and climate change. Understanding the risks associated with potable reuse is essential to ensuring that public health is protected from waterborne pathogens. This paper provides a review on the studies that have performed quantitative microbial risk assessments (QMRAs) on potable reuse. The 30 articles included here studied direct potable reuse (DPR), indirect potable reuse (IPR), and/or de facto reuse (DFR), and a variety of pathogens, including norovirus, adenovirus, Cryptosporidium, Giardia, Campylobacter, and Salmonella. The QMRAs were either ‘top-down’ or regulations-focused, where log reduction targets (LRTs) were determined based on initial (e.g., raw wastewater) pathogen concentrations and risk goals (e.g., 10−4 annual risk benchmark), or ‘bottom-up’ or risk-estimation-focused, where risks were calculated based on known pathogen concentrations and observed/credited log reduction values (LRVs). Some studies incorporated process failures and pathogen decay, which were often a driving factor for risk, but several studies omitted one or both. Many studies compared multiple treatment trains (e.g., carbon-based advanced treatment (CBAT) vs. reverse-osmosis-based advanced treatment (RBAT)). They found that treatment-based differences were pathogen-dependent because certain processes are better able to inactivate or remove certain pathogens. Many factors influence the risks reported in the various studies, including the assumed ratios of gene copies to infectious units (GC : IU), assumptions related to ingestion volume and frequency, dynamic vs. static modeling, and Bayesian approaches. The LRTs for the top-down QMRAs varied within and between studies, depending partially on the pathogen concentrations used and whether redundancy was included. The key findings from this review were that while QMRAs often have different goals warranting different assumptions, it is essential that researchers report these assumptions and their justifications so that policymakers and regulators fully understand their implications to avoid overly stringent or nonprotective regulations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Science: Water Research & Technology
Environmental Science: Water Research & Technology ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
8.60
自引率
4.00%
发文量
206
期刊介绍: Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.
期刊最新文献
Back cover Effect of inoculum percentage and hydrogen supply on hydrogenotrophic denitrification driven by anaerobic granular sludge† Correction: Kinetics and mechanism of hydrolysis of PF6− accelerated by H+ or Al3+ in aqueous solution Bioremediation of uranium contaminated sites through the formation of U(vi) phosphate (bio)minerals† Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1