HPSCAN: Human Perception-Based Scattered Data Clustering

IF 2.7 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computer Graphics Forum Pub Date : 2024-12-27 DOI:10.1111/cgf.15275
S. Hartwig, C. v. Onzenoodt, D. Engel, P. Hermosilla, T. Ropinski
{"title":"HPSCAN: Human Perception-Based Scattered Data Clustering","authors":"S. Hartwig,&nbsp;C. v. Onzenoodt,&nbsp;D. Engel,&nbsp;P. Hermosilla,&nbsp;T. Ropinski","doi":"10.1111/cgf.15275","DOIUrl":null,"url":null,"abstract":"<p>Cluster separation is a task typically tackled by widely used clustering techniques, such as k-means or DBSCAN. However, these algorithms are based on non-perceptual metrics, and our experiments demonstrate that their output does not reflect human cluster perception. To bridge the gap between human cluster perception and machine-computed clusters, we propose HPSCAN, a learning strategy that operates directly on scattered data. To learn perceptual cluster separation on such data, we crowdsourced the labeling of <span></span><math></math> bivariate (scatterplot) datasets to 384 human participants. We train our HPSCAN model on these human-annotated data. Instead of rendering these data as scatterplot images, we used their <i>x</i> and <i>y</i> point coordinates as input to a modified PointNet++ architecture, enabling direct inference on point clouds. In this work, we provide details on how we collected our dataset, report statistics of the resulting annotations, and investigate the perceptual agreement of cluster separation for real-world data. We also report the training and evaluation protocol for HPSCAN and introduce a novel metric, that measures the accuracy between a clustering technique and a group of human annotators. We explore predicting point-wise human agreement to detect ambiguities. Finally, we compare our approach to 10 established clustering techniques and demonstrate that HPSCAN is capable of generalizing to unseen and out-of-scope data.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15275","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15275","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Cluster separation is a task typically tackled by widely used clustering techniques, such as k-means or DBSCAN. However, these algorithms are based on non-perceptual metrics, and our experiments demonstrate that their output does not reflect human cluster perception. To bridge the gap between human cluster perception and machine-computed clusters, we propose HPSCAN, a learning strategy that operates directly on scattered data. To learn perceptual cluster separation on such data, we crowdsourced the labeling of bivariate (scatterplot) datasets to 384 human participants. We train our HPSCAN model on these human-annotated data. Instead of rendering these data as scatterplot images, we used their x and y point coordinates as input to a modified PointNet++ architecture, enabling direct inference on point clouds. In this work, we provide details on how we collected our dataset, report statistics of the resulting annotations, and investigate the perceptual agreement of cluster separation for real-world data. We also report the training and evaluation protocol for HPSCAN and introduce a novel metric, that measures the accuracy between a clustering technique and a group of human annotators. We explore predicting point-wise human agreement to detect ambiguities. Finally, we compare our approach to 10 established clustering techniques and demonstrate that HPSCAN is capable of generalizing to unseen and out-of-scope data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
期刊最新文献
Issue Information Editorial Lightweight Voronoi Sponza GeoCode: Interpretable Shape Programs Immersive and Interactive Learning With eDIVE: A Solution for Creating Collaborative VR Education Experiences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1