Mechanism of Bile-Processed Coptidis Rhizoma in the Treatment of Type 2 Diabetes Mellitus in Rats Based on Dissolution Kinetics and Untargeted Metabolomics
Ying Zhu, Zhaowei Dong, Lu Yang, Qinwan Huang, Jin Wang
{"title":"Mechanism of Bile-Processed Coptidis Rhizoma in the Treatment of Type 2 Diabetes Mellitus in Rats Based on Dissolution Kinetics and Untargeted Metabolomics","authors":"Ying Zhu, Zhaowei Dong, Lu Yang, Qinwan Huang, Jin Wang","doi":"10.1002/bmc.70040","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Bile-processed Coptidis Rhizoma (BPCR) exhibits stronger efficacy in treating T2DM than Coptidis Rhizoma(CR) alone. However, the synergistic mechanism of its processing remains unknown. This study utilized HPLC to determine the content and dissolution characteristics of alkaloid components in BPCR before and after processing. The results indicated that the diffusion of the alkaloids in BPCR is stronger than that of CR, and their dissolution conforms to the Weibull equation. Additionally, BPCR significantly reduced fasting blood glucose (FBG) and serum insulin (FINS) levels in T2DM rats induced by a high-fat diet (HFD) and streptozotocin (STZ), improved glucose and lipid metabolism, and mitigated liver damage. Serum metabolomics analysis based on UPLC-Q-TOF-MS revealed that BPCR significantly regulates 27 endogenous differential biomarkers. The underlying mechanism may be related to glycerophospholipid metabolism, linoleic acid metabolism, steroid biosynthesis, and arachidonic acid metabolism pathways.</p>\n </div>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"39 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Chromatography","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmc.70040","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Bile-processed Coptidis Rhizoma (BPCR) exhibits stronger efficacy in treating T2DM than Coptidis Rhizoma(CR) alone. However, the synergistic mechanism of its processing remains unknown. This study utilized HPLC to determine the content and dissolution characteristics of alkaloid components in BPCR before and after processing. The results indicated that the diffusion of the alkaloids in BPCR is stronger than that of CR, and their dissolution conforms to the Weibull equation. Additionally, BPCR significantly reduced fasting blood glucose (FBG) and serum insulin (FINS) levels in T2DM rats induced by a high-fat diet (HFD) and streptozotocin (STZ), improved glucose and lipid metabolism, and mitigated liver damage. Serum metabolomics analysis based on UPLC-Q-TOF-MS revealed that BPCR significantly regulates 27 endogenous differential biomarkers. The underlying mechanism may be related to glycerophospholipid metabolism, linoleic acid metabolism, steroid biosynthesis, and arachidonic acid metabolism pathways.
期刊介绍:
Biomedical Chromatography is devoted to the publication of original papers on the applications of chromatography and allied techniques in the biological and medical sciences. Research papers and review articles cover the methods and techniques relevant to the separation, identification and determination of substances in biochemistry, biotechnology, molecular biology, cell biology, clinical chemistry, pharmacology and related disciplines. These include the analysis of body fluids, cells and tissues, purification of biologically important compounds, pharmaco-kinetics and sequencing methods using HPLC, GC, HPLC-MS, TLC, paper chromatography, affinity chromatography, gel filtration, electrophoresis and related techniques.