Suyun Li, Yanbo Shan, Jingyi Chen, Ruyue Su, Lisheng Zhao, Rujie He, Ying Li
{"title":"Piezoelectricity Promotes 3D-Printed BTO/β-TCP Composite Scaffolds with Excellent Osteogenic Performance.","authors":"Suyun Li, Yanbo Shan, Jingyi Chen, Ruyue Su, Lisheng Zhao, Rujie He, Ying Li","doi":"10.1021/acsabm.4c01754","DOIUrl":null,"url":null,"abstract":"<p><p>Piezoelectricity is reported to be able to promote bone scaffolds with excellent osteogenic performance. Herein, barium titanate/β-tricalcium phosphate (BTO/β-TCP) piezoelectric composite scaffolds were 3D printed, and their osteogenic performances were investigated in detail. The fabrication of BTO/β-TCP piezoelectric composite scaffolds employed cutting-edge DLP 3D printing technology. The scaffolds, featuring a triply periodic minimal surface (TPMS) design with a porosity of 60%, offered a unique structural framework. A comprehensive assessment of the composition, piezoelectric properties, and mechanical characteristics of the BTO/β-TCP scaffolds was conducted. Notably, an increase in the BTO volume fraction from 50 to 80 vol % within the scaffolds led to a reduction in compressive strength, decreasing from 2.47 to 1.74 MPa. However, this variation was accompanied by a substantial enhancement in the piezoelectric constant d<sub>33</sub>, soaring from 1.4 pC/N to 21.6 pC/N. Utilizing mouse osteoblasts (MC3T3-E1) in a live/dead cell staining assay, under the influence of external ultrasound, demonstrated the commendable biocompatibility of these piezoelectric composite ceramic bone scaffolds. Furthermore, thorough analyses of alkaline phosphatase (ALP) activity and polymerase chain reaction (PCR) findings provided compelling evidence of the scaffolds' superior osteogenic properties, underpinning their effectiveness at the cellular protein and gene levels. In conclusion, this study offers a groundbreaking strategy for the employment of BTO/β-TCP piezoelectric composite scaffolds in bone implant applications, harnessing their unique blend of biocompatibility, piezoelectricity, and osteogenic potential.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Piezoelectricity is reported to be able to promote bone scaffolds with excellent osteogenic performance. Herein, barium titanate/β-tricalcium phosphate (BTO/β-TCP) piezoelectric composite scaffolds were 3D printed, and their osteogenic performances were investigated in detail. The fabrication of BTO/β-TCP piezoelectric composite scaffolds employed cutting-edge DLP 3D printing technology. The scaffolds, featuring a triply periodic minimal surface (TPMS) design with a porosity of 60%, offered a unique structural framework. A comprehensive assessment of the composition, piezoelectric properties, and mechanical characteristics of the BTO/β-TCP scaffolds was conducted. Notably, an increase in the BTO volume fraction from 50 to 80 vol % within the scaffolds led to a reduction in compressive strength, decreasing from 2.47 to 1.74 MPa. However, this variation was accompanied by a substantial enhancement in the piezoelectric constant d33, soaring from 1.4 pC/N to 21.6 pC/N. Utilizing mouse osteoblasts (MC3T3-E1) in a live/dead cell staining assay, under the influence of external ultrasound, demonstrated the commendable biocompatibility of these piezoelectric composite ceramic bone scaffolds. Furthermore, thorough analyses of alkaline phosphatase (ALP) activity and polymerase chain reaction (PCR) findings provided compelling evidence of the scaffolds' superior osteogenic properties, underpinning their effectiveness at the cellular protein and gene levels. In conclusion, this study offers a groundbreaking strategy for the employment of BTO/β-TCP piezoelectric composite scaffolds in bone implant applications, harnessing their unique blend of biocompatibility, piezoelectricity, and osteogenic potential.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.