Ramesh Singh, Liszt Y C Madruga, Aniruddha Savargaonkar, Alessandro F Martins, Matt J Kipper, Ketul C Popat
{"title":"Tanfloc-Modified Titanium Surfaces: Optimizing Blood Coagulant Activity and Stem Cell Compatibility.","authors":"Ramesh Singh, Liszt Y C Madruga, Aniruddha Savargaonkar, Alessandro F Martins, Matt J Kipper, Ketul C Popat","doi":"10.1021/acsbiomaterials.4c02106","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the synergistic effects of combining titania nanotubes (TiNTs) with the biopolymer Tanfloc (TAN) to enhance the surface properties of TiNTs for biomedical applications. We investigated the interactions of blood components and human adipose-derived stem cells (ADSCs) with TiNT surfaces covalently functionalized with Tanfloc (TAN), an aminolyzed polyphenolic tannin derivative. The functionalized surfaces (TiNT-TAN) have great potential to control protein adsorption and platelet adhesion and activation. Fluorescence and scanning electron microscopy (SEM) were used to analyze platelet adherence and activation. The amphoteric nature and multiple functional groups on TAN can control blood protein adsorption, platelet adhesion, and activation. Further, the modified surface supports adipose-derived stem cell (ADSC) viability, attachment, and growth without any cytotoxic effect. The TAN conjugation significantly (****<i>p</i> < 0.0001) increased the proliferation rate of ADSCs compared to the TiNT surfaces.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02106","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the synergistic effects of combining titania nanotubes (TiNTs) with the biopolymer Tanfloc (TAN) to enhance the surface properties of TiNTs for biomedical applications. We investigated the interactions of blood components and human adipose-derived stem cells (ADSCs) with TiNT surfaces covalently functionalized with Tanfloc (TAN), an aminolyzed polyphenolic tannin derivative. The functionalized surfaces (TiNT-TAN) have great potential to control protein adsorption and platelet adhesion and activation. Fluorescence and scanning electron microscopy (SEM) were used to analyze platelet adherence and activation. The amphoteric nature and multiple functional groups on TAN can control blood protein adsorption, platelet adhesion, and activation. Further, the modified surface supports adipose-derived stem cell (ADSC) viability, attachment, and growth without any cytotoxic effect. The TAN conjugation significantly (****p < 0.0001) increased the proliferation rate of ADSCs compared to the TiNT surfaces.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture