Tanfloc-Modified Titanium Surfaces: Optimizing Blood Coagulant Activity and Stem Cell Compatibility.

IF 5.5 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2025-03-10 Epub Date: 2025-02-27 DOI:10.1021/acsbiomaterials.4c02106
Ramesh Singh, Liszt Y C Madruga, Aniruddha Savargaonkar, Alessandro F Martins, Matt J Kipper, Ketul C Popat
{"title":"Tanfloc-Modified Titanium Surfaces: Optimizing Blood Coagulant Activity and Stem Cell Compatibility.","authors":"Ramesh Singh, Liszt Y C Madruga, Aniruddha Savargaonkar, Alessandro F Martins, Matt J Kipper, Ketul C Popat","doi":"10.1021/acsbiomaterials.4c02106","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the synergistic effects of combining titania nanotubes (TiNTs) with the biopolymer Tanfloc (TAN) to enhance the surface properties of TiNTs for biomedical applications. We investigated the interactions of blood components and human adipose-derived stem cells (ADSCs) with TiNT surfaces covalently functionalized with Tanfloc (TAN), an aminolyzed polyphenolic tannin derivative. The functionalized surfaces (TiNT-TAN) have great potential to control protein adsorption and platelet adhesion and activation. Fluorescence and scanning electron microscopy (SEM) were used to analyze platelet adherence and activation. The amphoteric nature and multiple functional groups on TAN can control blood protein adsorption, platelet adhesion, and activation. Further, the modified surface supports adipose-derived stem cell (ADSC) viability, attachment, and growth without any cytotoxic effect. The TAN conjugation significantly (****<i>p</i> < 0.0001) increased the proliferation rate of ADSCs compared to the TiNT surfaces.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"1445-1455"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897940/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02106","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the synergistic effects of combining titania nanotubes (TiNTs) with the biopolymer Tanfloc (TAN) to enhance the surface properties of TiNTs for biomedical applications. We investigated the interactions of blood components and human adipose-derived stem cells (ADSCs) with TiNT surfaces covalently functionalized with Tanfloc (TAN), an aminolyzed polyphenolic tannin derivative. The functionalized surfaces (TiNT-TAN) have great potential to control protein adsorption and platelet adhesion and activation. Fluorescence and scanning electron microscopy (SEM) were used to analyze platelet adherence and activation. The amphoteric nature and multiple functional groups on TAN can control blood protein adsorption, platelet adhesion, and activation. Further, the modified surface supports adipose-derived stem cell (ADSC) viability, attachment, and growth without any cytotoxic effect. The TAN conjugation significantly (****p < 0.0001) increased the proliferation rate of ADSCs compared to the TiNT surfaces.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
tanflo改性钛表面:优化血液凝固活性和干细胞相容性。
本研究探讨了钛纳米管(TiNTs)与生物聚合物Tanfloc (TAN)结合的协同效应,以提高TiNTs的表面性能,用于生物医学应用。我们研究了血液成分和人类脂肪源性干细胞(ADSCs)的相互作用,这些细胞的TiNT表面被Tanfloc (TAN)共价功能化,Tanfloc是一种氨基水解的多酚单宁衍生物。功能化表面(TiNT-TAN)在控制蛋白质吸附和血小板粘附和活化方面具有很大的潜力。荧光和扫描电镜(SEM)分析血小板粘附和活化情况。TAN的两性性质和多个官能团可控制血液蛋白吸附、血小板粘附和活化。此外,修饰的表面支持脂肪源性干细胞(ADSC)的活力、附着和生长,而没有任何细胞毒性作用。与TiNT表面相比,TAN结合显著提高了ADSCs的增殖率(****p < 0.0001)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
3D Osteoimmune Stem Cell Spheroids with Osteoinduction and Immunomodulation Dual Functionality for In Vivo Bone Tissue Engineering. An Experimental Study on 3D-Printed Gyroid-Shaped TC4 Porous Scaffolds Guiding Angiogenesis and Osteogenesis in Bone Defect Areas. A Novel Polyetheretherketone-Chondroitin Sulfate Zinc Composite: Enhancing Osseointegration through the Synergistic Effects of Chondroitin Sulfate and Zinc for Advanced Dental Implant Applications. Tissue-Slice Organ-on-Chip Culture of Hypothalamic and Pituitary of Lambs─The Role of Phoenixin-20 as a Modulator of Gonadotrophic Axis. 3D Bioprinting for Spinal Cord Injury: Engineering Scaffolds for Functional Recovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1