{"title":"Does Doping Always Increase Activity? Theoretical Insights into Non-metallic Doping Engineering of Corrugated Graphene.","authors":"Xinying Lin, Qiang Wan, Sen Lin","doi":"10.1021/acs.jpclett.5c00088","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional wisdom suggests that pristine graphene (Gr) is chemically inactive and that doping is an effective strategy to enhance its catalytic activity. Nevertheless, experimental evidence has demonstrated that non-metallic element (e.g., N, P, and S) doping of Gr significantly suppresses overall hydrogenation activity, yet the underlying mechanism remains to be elucidated. The present study investigates H<sub>2</sub> activation on P- and S-doped corrugated Gr using density functional theory calculations. The results show that the H<sub>2</sub> dissociation barriers on doped corrugated Gr are higher than those on undoped corrugated Gr, thus providing a plausible rationalization of the experimental observations. Importantly, the incorporation of non-metallic elements is found to exert a geometrical and electronic effect on Gr, signified by an increased distance and a decreased difference in the p<sub><i>z</i></sub> band center between dissociation sites, which is deleterious to the stabilization of transition states in H<sub>2</sub> activation. This study provides theoretical insights for the design of efficient metal-free catalysts for hydrogenation via non-metallic doping engineering.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":" ","pages":"2410-2416"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c00088","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional wisdom suggests that pristine graphene (Gr) is chemically inactive and that doping is an effective strategy to enhance its catalytic activity. Nevertheless, experimental evidence has demonstrated that non-metallic element (e.g., N, P, and S) doping of Gr significantly suppresses overall hydrogenation activity, yet the underlying mechanism remains to be elucidated. The present study investigates H2 activation on P- and S-doped corrugated Gr using density functional theory calculations. The results show that the H2 dissociation barriers on doped corrugated Gr are higher than those on undoped corrugated Gr, thus providing a plausible rationalization of the experimental observations. Importantly, the incorporation of non-metallic elements is found to exert a geometrical and electronic effect on Gr, signified by an increased distance and a decreased difference in the pz band center between dissociation sites, which is deleterious to the stabilization of transition states in H2 activation. This study provides theoretical insights for the design of efficient metal-free catalysts for hydrogenation via non-metallic doping engineering.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.