A Meta-Omics Approach Using eDNA and eRNA for the Assessment of Biotic Communities Associated With Royal Jelly Produced by the Western Honey Bee (Apis mellifera L.).
Jennifer M Standley, Jose Marcelino, Fahong Yu, James D Ellis
{"title":"A Meta-Omics Approach Using eDNA and eRNA for the Assessment of Biotic Communities Associated With Royal Jelly Produced by the Western Honey Bee (Apis mellifera L.).","authors":"Jennifer M Standley, Jose Marcelino, Fahong Yu, James D Ellis","doi":"10.1111/1755-0998.14090","DOIUrl":null,"url":null,"abstract":"<p><p>Royal jelly (RJ) is a glandular secretion fed to developing honey bee larvae by adult worker bees. It is also a potential source of disease transmission in and between honey bee colonies. We endeavored to characterize the microbiome, virome, and other biota present in RJ via an integrated meta-omics approach. Using a magnetic beads-based extraction protocol, we identified eDNA and eRNA fragments from organisms of interest in RJ using high-throughput metagenomics (DNA-seq), metatranscriptomics (total RNA-seq), and parallel sequencing. This allowed us to enhance the detection of Operational Taxonomic Units (OTUs) undetectable by standard 'omics or amplicon protocols'. Using this integrated approach, we detected OTUs present in RJ from honey bee pests and pathogens, including Melissococcus plutonius, Paenibacillus larvae, Varroa destructor, V. jacobsoni, Aethina tumida, Galleria mellonella, Vairimorpha ceranae, Apis mellifera filamentous virus, Black queen cell virus, Acute bee paralysis virus, Sacbrood virus, Deformed wing virus, Israeli acute bee paralysis virus, Kashmir bee virus, and Slow bee paralysis virus, as well as multiple beneficial gut bacteria from the genera Lactobacillus, Actinobacteria, and Gluconobacter. The presence of DNA and RNA from these organisms does not conclusively indicate the presence of live organisms in the RJ, but it does suggest some exposure of the RJ to these organisms. The results present a comprehensive eDNA and eRNA microbial profile of RJ, demonstrating that our novel method is an effective and sensitive molecular tool for high-resolution metagenomic and metatranscriptomic profiling, and is of value for detection of pathogens of concern for the beekeeping industry.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":" ","pages":"e14090"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1755-0998.14090","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Royal jelly (RJ) is a glandular secretion fed to developing honey bee larvae by adult worker bees. It is also a potential source of disease transmission in and between honey bee colonies. We endeavored to characterize the microbiome, virome, and other biota present in RJ via an integrated meta-omics approach. Using a magnetic beads-based extraction protocol, we identified eDNA and eRNA fragments from organisms of interest in RJ using high-throughput metagenomics (DNA-seq), metatranscriptomics (total RNA-seq), and parallel sequencing. This allowed us to enhance the detection of Operational Taxonomic Units (OTUs) undetectable by standard 'omics or amplicon protocols'. Using this integrated approach, we detected OTUs present in RJ from honey bee pests and pathogens, including Melissococcus plutonius, Paenibacillus larvae, Varroa destructor, V. jacobsoni, Aethina tumida, Galleria mellonella, Vairimorpha ceranae, Apis mellifera filamentous virus, Black queen cell virus, Acute bee paralysis virus, Sacbrood virus, Deformed wing virus, Israeli acute bee paralysis virus, Kashmir bee virus, and Slow bee paralysis virus, as well as multiple beneficial gut bacteria from the genera Lactobacillus, Actinobacteria, and Gluconobacter. The presence of DNA and RNA from these organisms does not conclusively indicate the presence of live organisms in the RJ, but it does suggest some exposure of the RJ to these organisms. The results present a comprehensive eDNA and eRNA microbial profile of RJ, demonstrating that our novel method is an effective and sensitive molecular tool for high-resolution metagenomic and metatranscriptomic profiling, and is of value for detection of pathogens of concern for the beekeeping industry.
期刊介绍:
Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines.
In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.