Sébastien Pirson, Marine Gautier-Isola, Louis Baudin, Loïc Rouaud, Aline Vanwynsberghe, Jonathan Deroye, Sophie Bekisz, Fabrice Gucciardo, Alizée Lebeau, Florence Buntinx, Elitsa Ivanova, Bernard Staumont, Silvia Blacher, Christine Gilles, Agnès Noël
{"title":"AXL promotes lymphangiogenesis by amplifying VEGF-C-mediated AKT pathway.","authors":"Sébastien Pirson, Marine Gautier-Isola, Louis Baudin, Loïc Rouaud, Aline Vanwynsberghe, Jonathan Deroye, Sophie Bekisz, Fabrice Gucciardo, Alizée Lebeau, Florence Buntinx, Elitsa Ivanova, Bernard Staumont, Silvia Blacher, Christine Gilles, Agnès Noël","doi":"10.1007/s00018-024-05542-3","DOIUrl":null,"url":null,"abstract":"<p><p>Lymphangiogenesis has gained considerable interest due to its established role in cancer progression and dissemination of metastatic cells through lymph nodes. Deciphering the molecular mechanisms that govern lymphangiogenesis within lymph nodes holds promise for revealing novel targetable molecules and pathways to inhibit metastasis. In this study, we revealed a previously unrecognized role of AXL, a tyrosine kinase receptor, in the lymphatic vessel formation. We first validated the expression of AXL in lymphatic endothelial cells (LECs), followed by functional studies using RNA interference and pharmacological inhibition with R428/Bemcentinib. These approaches provided compelling evidence that AXL promotes LEC migration in both 2D and 3D culture systems. Our findings demonstrated that AXL activation was induced by VEGF-C (Vascular Endothelial Growth Factor C) and further amplified downstream signaling via the AKT pathway. In vivo, the role of AXL in lymphatic vessel sprouting was demonstrated using R428 in a model of VEGF-C-induced lymphangiogenesis in lymph nodes. Interestingly, we discovered that AXL was predominantly expressed in MARCO<sup>+</sup> LECs. Strikingly, under metastatic conditions, there was a notable increase in the density and penetration extent of these AXL-expressing LECs into the lymph node parenchyma. Collectively, our findings pinpoint AXL as a potent enhancer of lymphangiogenesis operating through the VEGF-C/AKT pathway. Furthermore, the identification of AXL expression within a distinct LEC subpopulation, particularly in the context of metastasis, underscores the intricate interplay between AXL signaling and lymphatic dynamics within the lymph node microenvironment.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"95"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865408/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-024-05542-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lymphangiogenesis has gained considerable interest due to its established role in cancer progression and dissemination of metastatic cells through lymph nodes. Deciphering the molecular mechanisms that govern lymphangiogenesis within lymph nodes holds promise for revealing novel targetable molecules and pathways to inhibit metastasis. In this study, we revealed a previously unrecognized role of AXL, a tyrosine kinase receptor, in the lymphatic vessel formation. We first validated the expression of AXL in lymphatic endothelial cells (LECs), followed by functional studies using RNA interference and pharmacological inhibition with R428/Bemcentinib. These approaches provided compelling evidence that AXL promotes LEC migration in both 2D and 3D culture systems. Our findings demonstrated that AXL activation was induced by VEGF-C (Vascular Endothelial Growth Factor C) and further amplified downstream signaling via the AKT pathway. In vivo, the role of AXL in lymphatic vessel sprouting was demonstrated using R428 in a model of VEGF-C-induced lymphangiogenesis in lymph nodes. Interestingly, we discovered that AXL was predominantly expressed in MARCO+ LECs. Strikingly, under metastatic conditions, there was a notable increase in the density and penetration extent of these AXL-expressing LECs into the lymph node parenchyma. Collectively, our findings pinpoint AXL as a potent enhancer of lymphangiogenesis operating through the VEGF-C/AKT pathway. Furthermore, the identification of AXL expression within a distinct LEC subpopulation, particularly in the context of metastasis, underscores the intricate interplay between AXL signaling and lymphatic dynamics within the lymph node microenvironment.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered