{"title":"Fermented plant product (FPP) suppresses immediate hypersensitivity reactions with impaired high-affinity IgE receptor (FcεRI) signaling.","authors":"Tomoki Kodama, Ayana Yokoyama, Yuki Nishioka, Riku Kawasaki, Aiko Teshima, Akira Maeda, Ayano Hojo, Takumi Suizu, Hideto Torii, Kotaro Fujioka, Shinsuke Kishida, Takashi Fujimura, Kenji Arakawa, Atsushi Ikeda, Seiji Kawamoto","doi":"10.1007/s10616-025-00729-3","DOIUrl":null,"url":null,"abstract":"<p><p>Fermented plant product (FPP) is a dietary supplement made by fermentation and aging of a variety of plants, including fruits, vegetables, and grains. A previous study has shown that oral FPP supplementation prevents the development of allergic rhinitis-like nasal symptoms in a murine model of Japanese cedar pollinosis without affecting systemic immune response. However, the mode of action by which FPP exerts an anti-allergic effect remains to be elucidated. Here, we show that FPP acts on mast cells to suppress immediate hypersensitivity reactions in vitro as well as in vivo. We found that stimulation with FPP potently suppressed IgE antibody-mediated degranulation of RBL-2H3 rat basophilic leukemia cells. We also found that oral feeding with FPP significantly suppressed passive cutaneous anaphylaxis (PCA), an in vivo model of IgE- and mast cell-mediated hypersensitivity reactions. Mechanistic analysis revealed that FPP extensively suppressed the high-affinity IgE receptor (FcεRI) signaling pathway, in which FPP not only inhibited intracellular Ca<sup>2+</sup> influx upon FcεRI ligation but also negatively regulated another Ca<sup>2+</sup>-independent FcεRI signaling pathway leading to granule translocation through microtubule formation. These results suggest that FPP fulfills its anti-allergic activity by acting on the IgE-mast cell axis to suppress immediate hypersensitivity reactions.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 2","pages":"69"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861467/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-025-00729-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fermented plant product (FPP) is a dietary supplement made by fermentation and aging of a variety of plants, including fruits, vegetables, and grains. A previous study has shown that oral FPP supplementation prevents the development of allergic rhinitis-like nasal symptoms in a murine model of Japanese cedar pollinosis without affecting systemic immune response. However, the mode of action by which FPP exerts an anti-allergic effect remains to be elucidated. Here, we show that FPP acts on mast cells to suppress immediate hypersensitivity reactions in vitro as well as in vivo. We found that stimulation with FPP potently suppressed IgE antibody-mediated degranulation of RBL-2H3 rat basophilic leukemia cells. We also found that oral feeding with FPP significantly suppressed passive cutaneous anaphylaxis (PCA), an in vivo model of IgE- and mast cell-mediated hypersensitivity reactions. Mechanistic analysis revealed that FPP extensively suppressed the high-affinity IgE receptor (FcεRI) signaling pathway, in which FPP not only inhibited intracellular Ca2+ influx upon FcεRI ligation but also negatively regulated another Ca2+-independent FcεRI signaling pathway leading to granule translocation through microtubule formation. These results suggest that FPP fulfills its anti-allergic activity by acting on the IgE-mast cell axis to suppress immediate hypersensitivity reactions.
期刊介绍:
The scope of the Journal includes:
1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products.
2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools.
3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research.
4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy.
5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.