Identifying chronic obstructive pulmonary disease subtypes using multi-trait genetics.

IF 9.7 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL EBioMedicine Pub Date : 2025-02-25 DOI:10.1016/j.ebiom.2025.105609
Andrey Ziyatdinov, Brian D Hobbs, Samir Kanaan-Izquierdo, Matthew Moll, Phuwanat Sakornsakolpat, Nick Shrine, Jing Chen, Kijoung Song, Russell P Bowler, Peter J Castaldi, Martin D Tobin, Peter Kraft, Edwin K Silverman, Hanna Julienne, Michael H Cho, Hugues Aschard
{"title":"Identifying chronic obstructive pulmonary disease subtypes using multi-trait genetics.","authors":"Andrey Ziyatdinov, Brian D Hobbs, Samir Kanaan-Izquierdo, Matthew Moll, Phuwanat Sakornsakolpat, Nick Shrine, Jing Chen, Kijoung Song, Russell P Bowler, Peter J Castaldi, Martin D Tobin, Peter Kraft, Edwin K Silverman, Hanna Julienne, Michael H Cho, Hugues Aschard","doi":"10.1016/j.ebiom.2025.105609","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chronic Obstructive Pulmonary Disease (COPD) has a broad spectrum of clinical characteristics. The aetiology of these differences is not well understood. The objective of this study is to assess whether respiratory genetic variants cluster by phenotype and associate with COPD heterogeneity.</p><p><strong>Methods: </strong>We clustered genome-wide association studies of COPD, lung function, and asthma and phenotypes from the UK Biobank using non-negative matrix factorization. We constructed cluster-specific genetic risk scores and tested these scores for association with phenotypes in non-Hispanic white subjects in the COPDGene study.</p><p><strong>Findings: </strong>We identified three clusters from 482 variants and 44 traits from genetic associations in 379,337 UK Biobank participants. Variants from asthma, COPD, and lung function were found in all three clusters. Clusters displayed varying effects on white blood cell counts, height, and body mass index (BMI)-related phenotypes in the UK Biobank. In the COPDGene cohort, cluster-specific genetic risk scores were associated with differences in steroid use, BMI, lymphocyte counts, and chronic bronchitis, as well as variations in gene and protein expression.</p><p><strong>Interpretation: </strong>Our results suggest that multi-phenotype analysis of obstructive lung disease-related risk variants may identify genetically driven phenotypic patterns in COPD.</p><p><strong>Funding: </strong>MHC was supported by R01HL149861, R01HL135142, R01HL137927, R01HL147148, and R01HL089856. HA and HJ were supported by ANR-20-CE36-0009-02 and ANR-16-CONV-0005. The COPDGene study (NCT00608764) is supported by grants from the NHLBI (U01HL089897 and U01HL089856), by NIH contract 75N92023D00011, and by the COPD Foundation through contributions made to an Industry Advisory Committee that has included AstraZeneca, Bayer Pharmaceuticals, Boehringer-Ingelheim, Genentech, GlaxoSmithKline, Novartis, Pfizer and Sunovion.</p>","PeriodicalId":11494,"journal":{"name":"EBioMedicine","volume":"113 ","pages":"105609"},"PeriodicalIF":9.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EBioMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ebiom.2025.105609","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Chronic Obstructive Pulmonary Disease (COPD) has a broad spectrum of clinical characteristics. The aetiology of these differences is not well understood. The objective of this study is to assess whether respiratory genetic variants cluster by phenotype and associate with COPD heterogeneity.

Methods: We clustered genome-wide association studies of COPD, lung function, and asthma and phenotypes from the UK Biobank using non-negative matrix factorization. We constructed cluster-specific genetic risk scores and tested these scores for association with phenotypes in non-Hispanic white subjects in the COPDGene study.

Findings: We identified three clusters from 482 variants and 44 traits from genetic associations in 379,337 UK Biobank participants. Variants from asthma, COPD, and lung function were found in all three clusters. Clusters displayed varying effects on white blood cell counts, height, and body mass index (BMI)-related phenotypes in the UK Biobank. In the COPDGene cohort, cluster-specific genetic risk scores were associated with differences in steroid use, BMI, lymphocyte counts, and chronic bronchitis, as well as variations in gene and protein expression.

Interpretation: Our results suggest that multi-phenotype analysis of obstructive lung disease-related risk variants may identify genetically driven phenotypic patterns in COPD.

Funding: MHC was supported by R01HL149861, R01HL135142, R01HL137927, R01HL147148, and R01HL089856. HA and HJ were supported by ANR-20-CE36-0009-02 and ANR-16-CONV-0005. The COPDGene study (NCT00608764) is supported by grants from the NHLBI (U01HL089897 and U01HL089856), by NIH contract 75N92023D00011, and by the COPD Foundation through contributions made to an Industry Advisory Committee that has included AstraZeneca, Bayer Pharmaceuticals, Boehringer-Ingelheim, Genentech, GlaxoSmithKline, Novartis, Pfizer and Sunovion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
背景:慢性阻塞性肺病(COPD)具有广泛的临床特征。这些差异的病因尚不十分清楚。本研究的目的是评估呼吸系统遗传变异是否按表型聚集并与慢性阻塞性肺病的异质性相关:我们使用非负矩阵因式分解法对慢性阻塞性肺病、肺功能和哮喘的全基因组关联研究以及英国生物库中的表型进行了聚类。我们构建了聚类特异性遗传风险评分,并测试了这些评分与 COPDGene 研究中非西班牙裔白人受试者表型的关联:我们从 379,337 名英国生物库参与者的 482 个变异和 44 个遗传关联特征中确定了三个聚类。在所有三个聚类中都发现了来自哮喘、慢性阻塞性肺病和肺功能的变异。在英国生物库中,基因簇对白细胞计数、身高和体重指数(BMI)相关表型的影响各不相同。在 COPDGene 队列中,群组特异性遗传风险评分与类固醇使用、体重指数、淋巴细胞计数和慢性支气管炎的差异以及基因和蛋白质表达的变化有关:我们的研究结果表明,对阻塞性肺病相关风险变异进行多表型分析,可确定慢性阻塞性肺病的基因驱动表型模式:MHC得到了R01HL149861、R01HL135142、R01HL137927、R01HL147148和R01HL089856的资助。HA 和 HJ 得到了 ANR-20-CE36-0009-02 和 ANR-16-CONV-0005 的资助。COPDGene 研究(NCT00608764)得到了 NHLBI(U01HL089897 和 U01HL089856)、NIH 合同 75N92023D00011 以及 COPD 基金会的资助,COPD 基金会的成员包括阿斯利康、拜耳医药、勃林格殷格翰、基因泰克、葛兰素史克、诺华、辉瑞和 Sunovion。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EBioMedicine
EBioMedicine Biochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
17.70
自引率
0.90%
发文量
579
审稿时长
5 weeks
期刊介绍: eBioMedicine is a comprehensive biomedical research journal that covers a wide range of studies that are relevant to human health. Our focus is on original research that explores the fundamental factors influencing human health and disease, including the discovery of new therapeutic targets and treatments, the identification of biomarkers and diagnostic tools, and the investigation and modification of disease pathways and mechanisms. We welcome studies from any biomedical discipline that contribute to our understanding of disease and aim to improve human health.
期刊最新文献
Cellular blueprint of healthy and diseased human epiglottis and subglottis-a study of the Canadian Airways Research (CARE) group. Cohort-level clinical trajectory and molecular landscape of idiopathic subglottic stenosis for precision laryngology-a study of the Canadian airways research (CARE) group. Dynamics of gut resistome and mobilome in early life: a meta-analysis. Functional characterisation of missense ceruloplasmin variants and real-world prevalence assessment of Aceruloplasminemia using population data. Rapid high-throughput sequencing: a game-changer for timely addressing infectious diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1