Exploring the molecular mechanism of icariin improving spinal cord injury through network pharmacology combined with experimental verification.

IF 3.1 4区 医学 Q2 PHARMACOLOGY & PHARMACY Naunyn-Schmiedeberg's archives of pharmacology Pub Date : 2025-02-27 DOI:10.1007/s00210-025-03904-7
Mengmeng Zhou, Zehua Jiang, Maosen Zhang, Sa Feng, Boyuan Ma, Shunli Kan, Xuanhao Fu, Rusen Zhu
{"title":"Exploring the molecular mechanism of icariin improving spinal cord injury through network pharmacology combined with experimental verification.","authors":"Mengmeng Zhou, Zehua Jiang, Maosen Zhang, Sa Feng, Boyuan Ma, Shunli Kan, Xuanhao Fu, Rusen Zhu","doi":"10.1007/s00210-025-03904-7","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the potential pharmacological effects of icariin (ICA) in the treatment of spinal cord injury (SCI). Network pharmacology was used to focus on the potential targets and biological processes of ICA in SCI. Molecular docking was used to verify the ability of ICA to bind to its core targets. Finally, valuate the efficacy and potential mechanisms of ICA in treating spinal cord injury through in vitro and in vivo experiments. A total of 37 targets were screened out, and core genes were screened out from the protein‒protein interaction network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that these targets are enriched mainly in response to hypoxia, regulation of the cellular response to stress, and the TGF-beta signaling pathway. Molecular docking analysis showed that ICA has good docking ability with core targets. In animal experiments, Basso, Beattie and Bresnahan scores, catwalk gait analysis, hematoxylin and eosin staining, and RT-qPCR showed that ICA can inhibit spinal cord inflammation and effectively improve the behavioral and histological recovery after SCI rats. Western blot and immunofluorescence showed that ICA can reduce astrocyte activation and downregulate the TGF-beta signaling pathway after SCI. In addition, ICA can promote axonal nerve elongation and promotes angiogenesis after spinal cord injury in rats. In vitro experiments revealed that ICA can inhibit TGFβ1-induced activation of the TGF-beta signaling pathway and astrocyte activation. ICA treats SCI through multiple targets and pathways. ICA plays a major role in protecting nerves, promoting angiogenesis, and inhibiting reactive astrocyte activation in the treatment of SCI.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-025-03904-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to investigate the potential pharmacological effects of icariin (ICA) in the treatment of spinal cord injury (SCI). Network pharmacology was used to focus on the potential targets and biological processes of ICA in SCI. Molecular docking was used to verify the ability of ICA to bind to its core targets. Finally, valuate the efficacy and potential mechanisms of ICA in treating spinal cord injury through in vitro and in vivo experiments. A total of 37 targets were screened out, and core genes were screened out from the protein‒protein interaction network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that these targets are enriched mainly in response to hypoxia, regulation of the cellular response to stress, and the TGF-beta signaling pathway. Molecular docking analysis showed that ICA has good docking ability with core targets. In animal experiments, Basso, Beattie and Bresnahan scores, catwalk gait analysis, hematoxylin and eosin staining, and RT-qPCR showed that ICA can inhibit spinal cord inflammation and effectively improve the behavioral and histological recovery after SCI rats. Western blot and immunofluorescence showed that ICA can reduce astrocyte activation and downregulate the TGF-beta signaling pathway after SCI. In addition, ICA can promote axonal nerve elongation and promotes angiogenesis after spinal cord injury in rats. In vitro experiments revealed that ICA can inhibit TGFβ1-induced activation of the TGF-beta signaling pathway and astrocyte activation. ICA treats SCI through multiple targets and pathways. ICA plays a major role in protecting nerves, promoting angiogenesis, and inhibiting reactive astrocyte activation in the treatment of SCI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
5.60%
发文量
142
审稿时长
4-8 weeks
期刊介绍: Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.
期刊最新文献
Effect of sakuranetin against cyclophosphamide-induced immunodeficiency mice: role of IFN-γ/TNF-α/IgG/IgM/interleukins. The adipokines in oral cancer pathogenesis and its potential as a new therapeutic approach. Toosendanin promotes prostate cancer cell apoptosis, ferroptosis and M1 polarization via USP39-mediated PLK1 deubiquitination. Emerging therapeutic application of clemastine: a review of recent patents updates. Modulation of AMPK by esomeprazole and canagliflozin mitigates methotrexate-induced hepatotoxicity: involvement of MAPK/JNK/ERK, JAK1/STAT3, and PI3K/Akt signaling pathways.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1