Tang Jiafeng, Wang Lijuan, Wei Lan, You Yiqing, Yang Shiyu, Zeng Tao, Dang Tingting, Sun Haoli, Li Xiaoshan, Zhang Yan
{"title":"Network pharmacology analysis and animal experiment validation of inflammation inhibition by Swertiamarin in treating Ulcerative colitis.","authors":"Tang Jiafeng, Wang Lijuan, Wei Lan, You Yiqing, Yang Shiyu, Zeng Tao, Dang Tingting, Sun Haoli, Li Xiaoshan, Zhang Yan","doi":"10.1007/s00210-025-03944-z","DOIUrl":null,"url":null,"abstract":"<p><p>Ulcerative colitis (UC), a chronic inflammatory bowel disease with increasing global incidence and limited therapeutic options, underscores the urgent need for novel multi-target agents. Swertiamarin (STM), a secoiridoid glycoside derived from traditional medicine, exhibits anti-inflammatory properties, but its pharmacological mechanisms in UC remain unclear. In this study, we integrated network pharmacology and experimental validation to systematically decipher STM's therapeutic effects. Network analysis identified 67 overlapping targets between STM and UC, which were significantly enriched in key pathways such as Toll-like receptor 4/Nuclear factor-kappa B (TLR4/NF-κB), Interleukin-17 (IL-17), and apoptosis. Molecular docking and protein-protein interaction (PPI) networks prioritized core targets such as TLR4, Caspase-3 (CASP3), and Prostaglandin-endoperoxide synthase (PTGS2). In a dextran sulfate sodium (DSS)-induced murine UC model, STM treatment significantly alleviated colitis severity, evidenced by reduced disease activity index (DAI), attenuated colon shortening (56.5% improvement vs. DSS group, p < 0.01), and restored histological integrity. Mechanistically, STM suppressed TLR4/NF-κB signaling, decreasing phosphorylated Inhibitor of NF-κB alpha (p-IκBα) (1.84 ± 0.33 vs. DSS 2.32 ± 0.28) and NF-κB (1.62 ± 0.39 vs. DSS 2.33 ± 0.38), while downregulating pro-inflammatory mediators (TNF-α, Interleukin-1β) and elevating anti-inflammatory Interleukin10 (IL-10) (98.33 ± 4.13 vs. DSS 61.70 ± 6.70, p < 0.01). Furthermore, STM reduced intestinal epithelial apoptosis (20 ± 2 vs. DSS 55 ± 3, p < 0.01) and modulated systemic immune responses by normalizing lymphocyte/neutrophil ratios. These findings reveal STM's multi-target efficacy in UC, bridging traditional medicine with modern mechanistic insights, and position it as a promising candidate for further clinical development.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-025-03944-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Ulcerative colitis (UC), a chronic inflammatory bowel disease with increasing global incidence and limited therapeutic options, underscores the urgent need for novel multi-target agents. Swertiamarin (STM), a secoiridoid glycoside derived from traditional medicine, exhibits anti-inflammatory properties, but its pharmacological mechanisms in UC remain unclear. In this study, we integrated network pharmacology and experimental validation to systematically decipher STM's therapeutic effects. Network analysis identified 67 overlapping targets between STM and UC, which were significantly enriched in key pathways such as Toll-like receptor 4/Nuclear factor-kappa B (TLR4/NF-κB), Interleukin-17 (IL-17), and apoptosis. Molecular docking and protein-protein interaction (PPI) networks prioritized core targets such as TLR4, Caspase-3 (CASP3), and Prostaglandin-endoperoxide synthase (PTGS2). In a dextran sulfate sodium (DSS)-induced murine UC model, STM treatment significantly alleviated colitis severity, evidenced by reduced disease activity index (DAI), attenuated colon shortening (56.5% improvement vs. DSS group, p < 0.01), and restored histological integrity. Mechanistically, STM suppressed TLR4/NF-κB signaling, decreasing phosphorylated Inhibitor of NF-κB alpha (p-IκBα) (1.84 ± 0.33 vs. DSS 2.32 ± 0.28) and NF-κB (1.62 ± 0.39 vs. DSS 2.33 ± 0.38), while downregulating pro-inflammatory mediators (TNF-α, Interleukin-1β) and elevating anti-inflammatory Interleukin10 (IL-10) (98.33 ± 4.13 vs. DSS 61.70 ± 6.70, p < 0.01). Furthermore, STM reduced intestinal epithelial apoptosis (20 ± 2 vs. DSS 55 ± 3, p < 0.01) and modulated systemic immune responses by normalizing lymphocyte/neutrophil ratios. These findings reveal STM's multi-target efficacy in UC, bridging traditional medicine with modern mechanistic insights, and position it as a promising candidate for further clinical development.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.