Neuro-fuzzy scheme plus optimal PI control for controlling DC-DC converters.

IF 2.6 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES Science Progress Pub Date : 2025-01-01 DOI:10.1177/00368504241288790
Muhammed Süleyman, Tarık Veli Mumcu
{"title":"Neuro-fuzzy scheme plus optimal PI control for controlling DC-DC converters.","authors":"Muhammed Süleyman, Tarık Veli Mumcu","doi":"10.1177/00368504241288790","DOIUrl":null,"url":null,"abstract":"<p><p>The importance of solar systems as a renewable source has recently captured significant efforts from governments around the world to reduce their dependency on fossil fuels. Improving the efficiency of these systems, in general, is an important topic. Specifically, enhancing the control method used for controlling the DC-DC converter occupies a significant place in the efforts dedicated to increasing the efficiency of the solar system. The nonlinearity of such systems might deteriorate the performance of traditional controllers, such as PIDs. Therefore, this paper suggests a new scheme which consists of a PI controller and a neuro-fuzzy controller in a cascade manner. Particle swarm optimization is used for optimally designing the parameters of the PI controller for improving the system's dynamic and steady-state responses. Also, the proposed PI controller has only two tuning parameters which significantly reduce the design time. The system inputs of the proposed fuzzy controller are the power and the current changes, and its output is the duty cycle which directly affects the desired output voltage. On the other hand, the input of the PI controller is the error signal between the desired voltage and the output voltage of the DC-DC converter which forms the controlled variable. The main contribution of the paper is to enhance the efficiency of the system via connecting the optimal PI and neuro-fuzzy controller, which can store human experiences. Different scenarios are used to test the proposed controller and obtain optimal maximum power point tracking under different weather conditions. Results show that the proposed controller significantly improves the efficiency percentage of the DC-DC converter relative to the neuro-fuzzy controller alone by at least 15%. Also, the integral square error index indicates the proposed method has small tracking errors either for the setpoint tracking or disturbance rejection.</p>","PeriodicalId":56061,"journal":{"name":"Science Progress","volume":"108 1","pages":"368504241288790"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866391/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Progress","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1177/00368504241288790","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The importance of solar systems as a renewable source has recently captured significant efforts from governments around the world to reduce their dependency on fossil fuels. Improving the efficiency of these systems, in general, is an important topic. Specifically, enhancing the control method used for controlling the DC-DC converter occupies a significant place in the efforts dedicated to increasing the efficiency of the solar system. The nonlinearity of such systems might deteriorate the performance of traditional controllers, such as PIDs. Therefore, this paper suggests a new scheme which consists of a PI controller and a neuro-fuzzy controller in a cascade manner. Particle swarm optimization is used for optimally designing the parameters of the PI controller for improving the system's dynamic and steady-state responses. Also, the proposed PI controller has only two tuning parameters which significantly reduce the design time. The system inputs of the proposed fuzzy controller are the power and the current changes, and its output is the duty cycle which directly affects the desired output voltage. On the other hand, the input of the PI controller is the error signal between the desired voltage and the output voltage of the DC-DC converter which forms the controlled variable. The main contribution of the paper is to enhance the efficiency of the system via connecting the optimal PI and neuro-fuzzy controller, which can store human experiences. Different scenarios are used to test the proposed controller and obtain optimal maximum power point tracking under different weather conditions. Results show that the proposed controller significantly improves the efficiency percentage of the DC-DC converter relative to the neuro-fuzzy controller alone by at least 15%. Also, the integral square error index indicates the proposed method has small tracking errors either for the setpoint tracking or disturbance rejection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Progress
Science Progress Multidisciplinary-Multidisciplinary
CiteScore
3.80
自引率
0.00%
发文量
119
期刊介绍: Science Progress has for over 100 years been a highly regarded review publication in science, technology and medicine. Its objective is to excite the readers'' interest in areas with which they may not be fully familiar but which could facilitate their interest, or even activity, in a cognate field.
期刊最新文献
Noninvasive prediction of coronary artery disease severity: Comparative analysis of electrocardiographic findings and risk factors with SYNTAX and Gensini score. Peak serum lactate as a robust predictor of imminent death in life-sustaining treatment decisions: A study of 73,927 patients. Remarkable results of energy consumption and CO2 emissions for gasoline and electric powered vehicle. Advantages of the standardized use of preoperative fascia iliaca block versus conventional analgesia in older adults with fragility hip fracture: A retrospective cohort study at two hospitals in Colombia. Lurker: Backdoor attack-based explainable rumor detection on online media.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1