Structural, microstructural, dielectric, mechanical properties of PVDF/HAP nanocomposite films for bone regeneration applications.

A P Kajal Parida, Balaram Mishra, Mukesh Kumar Gupta, Pawan Kumar
{"title":"Structural, microstructural, dielectric, mechanical properties of PVDF/HAP nanocomposite films for bone regeneration applications.","authors":"A P Kajal Parida, Balaram Mishra, Mukesh Kumar Gupta, Pawan Kumar","doi":"10.1088/1748-605X/adbaa4","DOIUrl":null,"url":null,"abstract":"<p><p>Poly(vinylidene fluoride) (PVDF)/hydroxyapatite (HAP) nanocomposite films, incorporating HAP nanoparticles as filler within a PVDF matrix, were successfully synthesized by solution casting method. Increasing the HAP concentration in the nanocomposite significantly enhances its electroactive properties, with synergistic effects on surface, electrical and biological characteristics are investigated comprehensively. Improvements in topographical and mechanical parameters reveal the nanocomposite films for biomimetic suitability. Notably, the impact of dielectric and ferroelectric properties on biological studies is well established. With increasing the HAP concentration, we observed significant improvements in remnant polarization from 0.28 to 1.87 µC cm<sup>-2</sup>, saturation polarization from 1.1 to 2.10 µC cm<sup>-2</sup>, and coercive field from 88.55 to 243.65 kV cm<sup>-1</sup>. In<i>in-vitro</i>experiments with osteosarcoma cells, the nanocomposite films with 40% HAP showed higher cell proliferation and viability. Present finding indicated 60PVDF/40HAP nanocomposite films as a biomimicry candidate for bone regeneration applications.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/adbaa4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Poly(vinylidene fluoride) (PVDF)/hydroxyapatite (HAP) nanocomposite films, incorporating HAP nanoparticles as filler within a PVDF matrix, were successfully synthesized by solution casting method. Increasing the HAP concentration in the nanocomposite significantly enhances its electroactive properties, with synergistic effects on surface, electrical and biological characteristics are investigated comprehensively. Improvements in topographical and mechanical parameters reveal the nanocomposite films for biomimetic suitability. Notably, the impact of dielectric and ferroelectric properties on biological studies is well established. With increasing the HAP concentration, we observed significant improvements in remnant polarization from 0.28 to 1.87 µC cm-2, saturation polarization from 1.1 to 2.10 µC cm-2, and coercive field from 88.55 to 243.65 kV cm-1. Inin-vitroexperiments with osteosarcoma cells, the nanocomposite films with 40% HAP showed higher cell proliferation and viability. Present finding indicated 60PVDF/40HAP nanocomposite films as a biomimicry candidate for bone regeneration applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于骨再生的PVDF/HAP纳米复合膜的结构、微观结构、介电和力学性能。
以羟基磷灰石(HAP)纳米颗粒为填料,以PVDF为基体,采用溶液浇铸法制备了PVDF/HAP纳米复合膜。增加纳米复合材料中HAP的浓度可显著提高其电活性,并对其表面、电学和生物学特性进行了全面的协同效应研究。地形和力学参数的改进表明纳米复合膜具有仿生的适用性。值得注意的是,介电和铁电性质对生物学研究的影响已经得到了很好的证实。随着HAP浓度的增加,残余极化从0.28µC/cm²提高到1.87µC/cm²,饱和极化从1.1µC/cm²提高到2.10µC/cm²,矫顽力场从88.55µC/cm提高到243.65 kV/cm。在骨肉瘤细胞的体外实验中,含有40% HAP的纳米复合膜显示出更高的细胞增殖和活力。目前的发现表明60PVDF/40HAP纳米复合膜是骨再生应用的仿生候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D-printed EXOs/BMSCs composite hydrogel scaffolds for thyroid cartilage defect repair. On-demand drug delivery with wireless technology. Shear stress optimization and smart control strategies toward AI-integrated tissue culture systems. Optimizing non-crosslinked type I collagen barrier membranes for guided bone regeneration: a comparative study of a BMP-2 derived peptide adsorption and covalent grafting. Recent developments in zinc oxide-polymer nanocomposites for enhanced wound healing applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1