Evelyn E Alley, Tanisha Warrier, Ranim Saleem, Graham R Scott
{"title":"Thermal sensitivity of respiration and ROS emission of muscle mitochondria in deer mice.","authors":"Evelyn E Alley, Tanisha Warrier, Ranim Saleem, Graham R Scott","doi":"10.1007/s00360-025-01607-2","DOIUrl":null,"url":null,"abstract":"<p><p>The impacts of heat exposure on mitochondrial physiology are poorly understood in most mammals. We examined the thermal effects on muscle mitochondrial function in deer mice (Peromyscus maniculatus), a species in which running endurance is impaired when heat exposure increases body temperature beyond 40 °C. Mitochondrial physiology was examined at 37, 40, and 42 °C using both permeabilized fibres and isolated mitochondria from the gastrocnemius muscle. Hot temperatures increased leak respiration, reduced the coupling efficiency of oxidative phosphorylation, and increased reactive oxygen species (ROS) emission. These results suggest that heat exposure reduces mitochondrial efficiency, which could contribute to impairments in running performance, and may also induce oxidative stress. Thermal effects on mitochondrial function may thus represent a potential vulnerability during heat exposure in mammals.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00360-025-01607-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The impacts of heat exposure on mitochondrial physiology are poorly understood in most mammals. We examined the thermal effects on muscle mitochondrial function in deer mice (Peromyscus maniculatus), a species in which running endurance is impaired when heat exposure increases body temperature beyond 40 °C. Mitochondrial physiology was examined at 37, 40, and 42 °C using both permeabilized fibres and isolated mitochondria from the gastrocnemius muscle. Hot temperatures increased leak respiration, reduced the coupling efficiency of oxidative phosphorylation, and increased reactive oxygen species (ROS) emission. These results suggest that heat exposure reduces mitochondrial efficiency, which could contribute to impairments in running performance, and may also induce oxidative stress. Thermal effects on mitochondrial function may thus represent a potential vulnerability during heat exposure in mammals.
期刊介绍:
The Journal of Comparative Physiology B publishes peer-reviewed original articles and reviews on the comparative physiology of invertebrate and vertebrate animals. Special emphasis is placed on integrative studies that elucidate mechanisms at the whole-animal, organ, tissue, cellular and/or molecular levels. Review papers report on the current state of knowledge in an area of comparative physiology, and directions in which future research is needed.