Unravelling the Oxygen Evolution Mechanism of Lithium-Rich Antifluorite Prelithiation Agent Based on Anionic Oxidation

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-02-28 DOI:10.1002/anie.202502126
Yuanlong Zhu, Ruoyu Xu, Yichun Zheng, Yilong Chen, Jianhua Yin, Jiyuan Xue, Baodan Zhang, Li Li, Guifan Zeng, Haiyan Luo, Xiaohong Wu, Kang Zhang, Zixin Wu, Siyu Yang, Shuoyu Li, Yang Sun, Datong Zhang, Yu Qiao, Shi-Gang Sun
{"title":"Unravelling the Oxygen Evolution Mechanism of Lithium-Rich Antifluorite Prelithiation Agent Based on Anionic Oxidation","authors":"Yuanlong Zhu,&nbsp;Ruoyu Xu,&nbsp;Yichun Zheng,&nbsp;Yilong Chen,&nbsp;Jianhua Yin,&nbsp;Jiyuan Xue,&nbsp;Baodan Zhang,&nbsp;Li Li,&nbsp;Guifan Zeng,&nbsp;Haiyan Luo,&nbsp;Xiaohong Wu,&nbsp;Kang Zhang,&nbsp;Zixin Wu,&nbsp;Siyu Yang,&nbsp;Shuoyu Li,&nbsp;Yang Sun,&nbsp;Datong Zhang,&nbsp;Yu Qiao,&nbsp;Shi-Gang Sun","doi":"10.1002/anie.202502126","DOIUrl":null,"url":null,"abstract":"<p>Developing sacrificial cathode prelithiation technology to compensate for irreversible lithium loss is crucial for enhancing the energy density of lithium-ion batteries. Antifluorite Li-rich Li<sub>5</sub>FeO<sub>4</sub> (LFO) is a promising prelithiation agent due to its high theoretical capacity (867 mAh g<sup>−1</sup>) and superior decomposition dynamic (&lt;4.0 V vs. Li/Li<sup>+</sup>). However, the oxygen evolution mechanism in LFO remains unclear, limiting its application as an ideal prelithiation agent. Herein, we systematically track the full lifecycle oxygen footprint in LFO lattice, electrolyte and solid electrolyte interface (SEI). We demonstrate the lattice mismatch induced by the quasi-disorder rocksalt intermediate phase can activate the lattice oxygen oxidation promoting the dimerization to O<sub>2</sub>. Specifically, in contrast to the O─O dimers formed within typical anionic-redox active cathodes, the oxidation of lattice oxygen in LFO generates O<sup>−</sup> stabilized in Li<sub>6</sub>-O configuration. Significantly, a pair of edge-sharing Li<sub>6</sub>-O configurations transforms into a superoxo dimer, which further evolves into O<sub>2</sub> via a ligand-to-metal charge transfer process. Moreover, we demonstrate that nucleophilic intermediates threaten the stability of electrolytes and SEI. Leveraging the insights above, we offer comprehensive perspectives for the modification of ideal prelithiation agents.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 19","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202502126","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing sacrificial cathode prelithiation technology to compensate for irreversible lithium loss is crucial for enhancing the energy density of lithium-ion batteries. Antifluorite Li-rich Li5FeO4 (LFO) is a promising prelithiation agent due to its high theoretical capacity (867 mAh g−1) and superior decomposition dynamic (<4.0 V vs. Li/Li+). However, the oxygen evolution mechanism in LFO remains unclear, limiting its application as an ideal prelithiation agent. Herein, we systematically track the full lifecycle oxygen footprint in LFO lattice, electrolyte and solid electrolyte interface (SEI). We demonstrate the lattice mismatch induced by the quasi-disorder rocksalt intermediate phase can activate the lattice oxygen oxidation promoting the dimerization to O2. Specifically, in contrast to the O─O dimers formed within typical anionic-redox active cathodes, the oxidation of lattice oxygen in LFO generates O stabilized in Li6-O configuration. Significantly, a pair of edge-sharing Li6-O configurations transforms into a superoxo dimer, which further evolves into O2 via a ligand-to-metal charge transfer process. Moreover, we demonstrate that nucleophilic intermediates threaten the stability of electrolytes and SEI. Leveraging the insights above, we offer comprehensive perspectives for the modification of ideal prelithiation agents.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于阴离子氧化的富锂反萤石预锂化剂析氧机理研究
开发牺牲阴极预锂化技术来补偿不可逆锂的损失是提高锂离子电池能量密度的关键。富锂抗萤石Li5FeO4 (LFO)具有较高的理论容量(867 mAh/g)和优异的分解动力学(<;4.0 V vs。李/李+)。然而,LFO的析氧机制尚不清楚,限制了其作为理想的预锂化剂的应用。在此,我们系统地跟踪了LFO晶格、电解质和固体电解质界面(SEI)的全生命周期氧足迹。我们证明了由准无序岩盐中间相引起的晶格失配可以激活晶格氧氧化,促进二聚化成O2。具体来说,与典型阴离子氧化还原活性阴极中形成的O-O二聚体相反,LFO中晶格氧的氧化产生了Li6-O构型的O-稳定。值得注意的是,一对边共享的Li6-O构型转变为超氧二聚体,通过配体到金属的电荷转移过程进一步演变为O2。此外,我们证明了亲核中间体威胁电解质和SEI的稳定性。利用上述见解,我们为理想的前锂化剂的改性提供了全面的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Synergistic Action of Crystallophore and Imaging-Crystallophore Enhances the Production and Imaging of Protein Crystals Regulation of the D-Band Center Through Ligand Engineering in Silver Cluster-Based MOFs Enhances Acidic CO2 Electroreduction Ionomer-Driven Reaction Microenvironment Control in Bicarbonate-Mediated Integrated CO2 Capture and Electrolysis Selective Singlet Oxygen Generation over a Silver–Porphyrin Single-Atom-Site Catalyst for Ultrafast Sulfide Photooxidation Thiourea-Functionalized Ionizable Lipids Enable Systemic mRNA Delivery to Secondary Lymphoid Organs and Dual-Modal Lymphatic Metastasis Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1