Quentin Lebon , Josselin Lefèvre , Jean Cousty , Benjamin Perret
{"title":"Incremental watershed cuts: Interactive segmentation algorithm with parallel strategy","authors":"Quentin Lebon , Josselin Lefèvre , Jean Cousty , Benjamin Perret","doi":"10.1016/j.patrec.2024.12.005","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we design an incremental method for computing seeded watershed cuts for interactive image segmentation. We propose an algorithm based on the hierarchical image representation called the binary partition tree to compute a seeded watershed cut. Additionally, we leverage properties of minimum spanning forests to introduce a parallel method for labeling a connected component. We show that those algorithms fits perfectly in an interactive segmentation process by handling user interactions, seed addition or removal, in linear time with respect to the number of affected pixels. Run time comparisons with several state-of-the-art interactive and non-interactive watershed methods show that the proposed method can handle user interactions much faster than previous methods with a significant speedup ranging from 10 to 60 on both 2D and 3D images, thus improving the user experience on large images.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"189 ","pages":"Pages 256-263"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016786552400360X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we design an incremental method for computing seeded watershed cuts for interactive image segmentation. We propose an algorithm based on the hierarchical image representation called the binary partition tree to compute a seeded watershed cut. Additionally, we leverage properties of minimum spanning forests to introduce a parallel method for labeling a connected component. We show that those algorithms fits perfectly in an interactive segmentation process by handling user interactions, seed addition or removal, in linear time with respect to the number of affected pixels. Run time comparisons with several state-of-the-art interactive and non-interactive watershed methods show that the proposed method can handle user interactions much faster than previous methods with a significant speedup ranging from 10 to 60 on both 2D and 3D images, thus improving the user experience on large images.
期刊介绍:
Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition.
Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.