Deep learning-based classification, detection, and segmentation of tomato leaf diseases: A state-of-the-art review

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY Artificial Intelligence in Agriculture Pub Date : 2025-02-20 DOI:10.1016/j.aiia.2025.02.006
Aritra Das , Fahad Pathan , Jamin Rahman Jim , Md Mohsin Kabir , M.F. Mridha
{"title":"Deep learning-based classification, detection, and segmentation of tomato leaf diseases: A state-of-the-art review","authors":"Aritra Das ,&nbsp;Fahad Pathan ,&nbsp;Jamin Rahman Jim ,&nbsp;Md Mohsin Kabir ,&nbsp;M.F. Mridha","doi":"10.1016/j.aiia.2025.02.006","DOIUrl":null,"url":null,"abstract":"<div><div>The early identification and treatment of tomato leaf diseases are crucial for optimizing plant productivity, efficiency and quality. Misdiagnosis by the farmers poses the risk of inadequate treatments, harming both tomato plants and agroecosystems. Precision of disease diagnosis is essential, necessitating a swift and accurate response to misdiagnosis for early identification. Tropical regions are ideal for tomato plants, but there are inherent concerns, such as weather-related problems. Plant diseases largely cause financial losses in crop production. The slow detection periods of conventional approaches are insufficient for the timely detection of tomato diseases. Deep learning has emerged as a promising avenue for early disease identification. This study comprehensively analyzed techniques for classifying and detecting tomato leaf diseases and evaluating their strengths and weaknesses. The study delves into various diagnostic procedures, including image pre-processing, localization and segmentation. In conclusion, applying deep learning algorithms holds great promise for enhancing the accuracy and efficiency of tomato leaf disease diagnosis by offering faster and more effective results.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"15 2","pages":"Pages 192-220"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258972172500025X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The early identification and treatment of tomato leaf diseases are crucial for optimizing plant productivity, efficiency and quality. Misdiagnosis by the farmers poses the risk of inadequate treatments, harming both tomato plants and agroecosystems. Precision of disease diagnosis is essential, necessitating a swift and accurate response to misdiagnosis for early identification. Tropical regions are ideal for tomato plants, but there are inherent concerns, such as weather-related problems. Plant diseases largely cause financial losses in crop production. The slow detection periods of conventional approaches are insufficient for the timely detection of tomato diseases. Deep learning has emerged as a promising avenue for early disease identification. This study comprehensively analyzed techniques for classifying and detecting tomato leaf diseases and evaluating their strengths and weaknesses. The study delves into various diagnostic procedures, including image pre-processing, localization and segmentation. In conclusion, applying deep learning algorithms holds great promise for enhancing the accuracy and efficiency of tomato leaf disease diagnosis by offering faster and more effective results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊最新文献
Deep learning-based classification, detection, and segmentation of tomato leaf diseases: A state-of-the-art review Using UAV-based multispectral images and CGS-YOLO algorithm to distinguish maize seeding from weed Addressing computation resource exhaustion associated with deep learning training of three-dimensional hyperspectral images using multiclass weed classification Precision agriculture technologies for soil site-specific nutrient management: A comprehensive review Advancing precision agriculture: A comparative analysis of YOLOv8 for multi-class weed detection in cotton cultivation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1