Classification of geological borehole descriptions using a domain adapted large language model

IF 3.2 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2025-02-01 DOI:10.1016/j.acags.2025.100229
Hossein Ghorbanfekr, Pieter Jan Kerstens, Katrijn Dirix
{"title":"Classification of geological borehole descriptions using a domain adapted large language model","authors":"Hossein Ghorbanfekr,&nbsp;Pieter Jan Kerstens,&nbsp;Katrijn Dirix","doi":"10.1016/j.acags.2025.100229","DOIUrl":null,"url":null,"abstract":"<div><div>Geological borehole descriptions contain detailed textual information about the composition of the subsurface. However, their unstructured format presents significant challenges for extracting relevant features into a structured format. This paper introduces GEOBERTje: a domain adapted large language model trained on geological borehole descriptions from Flanders (Belgium) in the Dutch language. This model effectively extracts relevant information from the borehole descriptions and represents it into a numeric vector space. Showcasing just one potential application of GEOBERTje, we finetune a classifier model on a limited number of manually labeled observations. This classifier categorizes borehole descriptions into a main, second and third lithology class. We show that our classifier outperforms a rule-based approach (by 30% on average), non-contextual Word2Vec embeddings combined with a random forest classifier (by 38% on average), and a prompt engineering method with large language models (i.e., GPT-4 (by 11% on average) and Gemma 2 (by 28% on average)). This study exemplifies how domain adapted large language models enhance the efficiency and accuracy of extracting information from complex, unstructured geological descriptions. This offers new opportunities for geological analysis and modeling using vast amounts of data.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"25 ","pages":"Article 100229"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197425000114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Geological borehole descriptions contain detailed textual information about the composition of the subsurface. However, their unstructured format presents significant challenges for extracting relevant features into a structured format. This paper introduces GEOBERTje: a domain adapted large language model trained on geological borehole descriptions from Flanders (Belgium) in the Dutch language. This model effectively extracts relevant information from the borehole descriptions and represents it into a numeric vector space. Showcasing just one potential application of GEOBERTje, we finetune a classifier model on a limited number of manually labeled observations. This classifier categorizes borehole descriptions into a main, second and third lithology class. We show that our classifier outperforms a rule-based approach (by 30% on average), non-contextual Word2Vec embeddings combined with a random forest classifier (by 38% on average), and a prompt engineering method with large language models (i.e., GPT-4 (by 11% on average) and Gemma 2 (by 28% on average)). This study exemplifies how domain adapted large language models enhance the efficiency and accuracy of extracting information from complex, unstructured geological descriptions. This offers new opportunities for geological analysis and modeling using vast amounts of data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于域适应大语言模型的地质钻孔描述分类
地质钻孔描述包含有关地下成分的详细文本信息。然而,它们的非结构化格式对将相关特征提取为结构化格式提出了重大挑战。本文介绍了GEOBERTje:一种基于荷兰语法兰德斯(比利时)地质钻孔描述训练的领域适应大语言模型。该模型有效地从井眼描述中提取相关信息,并将其表示为数值向量空间。仅展示GEOBERTje的一个潜在应用,我们在有限数量的手动标记观测值上微调分类器模型。该分类器将井眼描述分为主要、第二和第三岩性类。我们表明,我们的分类器优于基于规则的方法(平均30%),非上下文Word2Vec嵌入结合随机森林分类器(平均38%),以及具有大型语言模型的提示工程方法(即GPT-4(平均11%)和Gemma 2(平均28%))。本研究举例说明了领域适应大语言模型如何提高从复杂、非结构化的地质描述中提取信息的效率和准确性。这为使用大量数据进行地质分析和建模提供了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
Enhancing neuro-symbolic AI for mineral prediction via LLM-guided knowledge integration Editorial Board Separation of P- and S-waves on shallow subsurface using transfer learning Analyzing land use land cover changes in Mysuru taluk, Karnataka state, India using vision transformers Fine-tuning small and open LLMs to automate geoscience data analysis workflows: A scalable approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1