Akshita Sahni , Sreeparna Majee , Jay D. Pal , Erin E. McIntyre , Kelly Cao , Debanjan Mukherjee
{"title":"Hemodynamics indicates differences between patients with and without a stroke outcome after left ventricular assist device implantation","authors":"Akshita Sahni , Sreeparna Majee , Jay D. Pal , Erin E. McIntyre , Kelly Cao , Debanjan Mukherjee","doi":"10.1016/j.compbiomed.2025.109877","DOIUrl":null,"url":null,"abstract":"<div><div>Stroke remains a leading cause of complications and mortality in heart failure patients treated with a Left Ventricular Assist Device (LVAD). Hemodynamics plays a central role underlying post-LVAD stroke risk and etiology. Yet, detailed quantitative assessment of hemodynamic variables and their relation to stroke outcomes in patients on LVAD support remains a challenge. Modalities for pre-implantation assessment of post-implantation hemodynamics can help address this challenge. We present an <em>in silico</em> hemodynamics analysis for a digital twin cohort 12 patients on LVAD support; 6 with reported stroke outcomes and 6 without. For each patient we created a post-implant twin with the LVAD outflow graft reconstructed from cardiac-gated CT images; and a pre-implant twin of an estimated baseline flow by removing the LVAD outflow graft and driving flow from the aortic valve opening. Hemodynamics was characterized using descriptors for helical flow, vortex generation, and wall shear stress. We observed higher average values for descriptors of positive helical flow, vortex generation, and wall shear stress, across the 6 cases with stroke outcomes when compared with cases without stroke. When the descriptors for LVAD-driven flow were compared against estimated pre-implantation flow, extent of positive helicity was higher, and vorticity and wall shear were lower in cases with stroke compared to those without. Our study suggests that quantitative analysis of hemodynamics after LVAD implantation; and hemodynamic alterations from a pre-implant flow scenario, can potentially reveal hidden information linked to stroke outcomes during LVAD support. This has broad implications on understanding stroke etiology; and using patient digital twins for LVAD treatment planning, surgical optimization, and efficacy assessment.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"189 ","pages":"Article 109877"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525002288","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Stroke remains a leading cause of complications and mortality in heart failure patients treated with a Left Ventricular Assist Device (LVAD). Hemodynamics plays a central role underlying post-LVAD stroke risk and etiology. Yet, detailed quantitative assessment of hemodynamic variables and their relation to stroke outcomes in patients on LVAD support remains a challenge. Modalities for pre-implantation assessment of post-implantation hemodynamics can help address this challenge. We present an in silico hemodynamics analysis for a digital twin cohort 12 patients on LVAD support; 6 with reported stroke outcomes and 6 without. For each patient we created a post-implant twin with the LVAD outflow graft reconstructed from cardiac-gated CT images; and a pre-implant twin of an estimated baseline flow by removing the LVAD outflow graft and driving flow from the aortic valve opening. Hemodynamics was characterized using descriptors for helical flow, vortex generation, and wall shear stress. We observed higher average values for descriptors of positive helical flow, vortex generation, and wall shear stress, across the 6 cases with stroke outcomes when compared with cases without stroke. When the descriptors for LVAD-driven flow were compared against estimated pre-implantation flow, extent of positive helicity was higher, and vorticity and wall shear were lower in cases with stroke compared to those without. Our study suggests that quantitative analysis of hemodynamics after LVAD implantation; and hemodynamic alterations from a pre-implant flow scenario, can potentially reveal hidden information linked to stroke outcomes during LVAD support. This has broad implications on understanding stroke etiology; and using patient digital twins for LVAD treatment planning, surgical optimization, and efficacy assessment.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.