Generative AI for synthetic data across multiple medical modalities: A systematic review of recent developments and challenges

IF 7 2区 医学 Q1 BIOLOGY Computers in biology and medicine Pub Date : 2025-03-01 DOI:10.1016/j.compbiomed.2025.109834
Mahmoud Ibrahim , Yasmina Al Khalil , Sina Amirrajab , Chang Sun , Marcel Breeuwer , Josien Pluim , Bart Elen , Gökhan Ertaylan , Michel Dumontier
{"title":"Generative AI for synthetic data across multiple medical modalities: A systematic review of recent developments and challenges","authors":"Mahmoud Ibrahim ,&nbsp;Yasmina Al Khalil ,&nbsp;Sina Amirrajab ,&nbsp;Chang Sun ,&nbsp;Marcel Breeuwer ,&nbsp;Josien Pluim ,&nbsp;Bart Elen ,&nbsp;Gökhan Ertaylan ,&nbsp;Michel Dumontier","doi":"10.1016/j.compbiomed.2025.109834","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a comprehensive systematic review of generative models (GANs, VAEs, DMs, and LLMs) used to synthesize various medical data types, including imaging (dermoscopic, mammographic, ultrasound, CT, MRI, and X-ray), text, time-series, and tabular data (EHR). Unlike previous narrowly focused reviews, our study encompasses a broad array of medical data modalities and explores various generative models. Our aim is to offer insights into their current and future applications in medical research, particularly in the context of synthesis applications, generation techniques, and evaluation methods, as well as providing a GitHub repository as a dynamic resource for ongoing collaboration and innovation.</div><div>Our search strategy queries databases such as Scopus, PubMed, and ArXiv, focusing on recent works from January 2021 to November 2023, excluding reviews and perspectives. This period emphasizes recent advancements beyond GANs, which have been extensively covered in previous reviews. The survey also emphasizes the aspect of conditional generation, which is not focused on in similar work.</div><div>Key contributions include a broad, multi-modality scope that identifies cross-modality insights and opportunities unavailable in single-modality surveys. While core generative techniques are transferable, we find that synthesis methods often lack sufficient integration of patient-specific context, clinical knowledge, and modality-specific requirements tailored to the unique characteristics of medical data. Conditional models leveraging textual conditioning and multimodal synthesis remain underexplored but offer promising directions for innovation.</div><div>Our findings are structured around three themes: (1) Synthesis applications, highlighting clinically valid synthesis applications and significant gaps in using synthetic data beyond augmentation, such as for validation and evaluation; (2) Generation techniques, identifying gaps in personalization and cross-modality innovation; and (3) Evaluation methods, revealing the absence of standardized benchmarks, the need for large-scale validation, and the importance of privacy-aware, clinically relevant evaluation frameworks. These findings emphasize the need for benchmarking and comparative studies to promote openness and collaboration.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"189 ","pages":"Article 109834"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525001842","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a comprehensive systematic review of generative models (GANs, VAEs, DMs, and LLMs) used to synthesize various medical data types, including imaging (dermoscopic, mammographic, ultrasound, CT, MRI, and X-ray), text, time-series, and tabular data (EHR). Unlike previous narrowly focused reviews, our study encompasses a broad array of medical data modalities and explores various generative models. Our aim is to offer insights into their current and future applications in medical research, particularly in the context of synthesis applications, generation techniques, and evaluation methods, as well as providing a GitHub repository as a dynamic resource for ongoing collaboration and innovation.
Our search strategy queries databases such as Scopus, PubMed, and ArXiv, focusing on recent works from January 2021 to November 2023, excluding reviews and perspectives. This period emphasizes recent advancements beyond GANs, which have been extensively covered in previous reviews. The survey also emphasizes the aspect of conditional generation, which is not focused on in similar work.
Key contributions include a broad, multi-modality scope that identifies cross-modality insights and opportunities unavailable in single-modality surveys. While core generative techniques are transferable, we find that synthesis methods often lack sufficient integration of patient-specific context, clinical knowledge, and modality-specific requirements tailored to the unique characteristics of medical data. Conditional models leveraging textual conditioning and multimodal synthesis remain underexplored but offer promising directions for innovation.
Our findings are structured around three themes: (1) Synthesis applications, highlighting clinically valid synthesis applications and significant gaps in using synthetic data beyond augmentation, such as for validation and evaluation; (2) Generation techniques, identifying gaps in personalization and cross-modality innovation; and (3) Evaluation methods, revealing the absence of standardized benchmarks, the need for large-scale validation, and the importance of privacy-aware, clinically relevant evaluation frameworks. These findings emphasize the need for benchmarking and comparative studies to promote openness and collaboration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
期刊最新文献
Exploring the potential of direct-acting antivirals against Chikungunya virus through structure-based drug repositioning and molecular dynamic simulations Comprehensive experimental and computational analysis of endemic Allium tuncelianum: Phytochemical profiling, antimicrobial activity, and In silico studies for potential therapeutic applications Automatic cerebral microbleeds detection from MR images via multi-channel and multi-scale CNNs Integrating local and global attention mechanisms for enhanced oral cancer detection and explainability Uncovering the role of TREM-1 in celiac disease: In silico insights into the recognition of gluten-derived peptides and inflammatory mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1