Guiding patient-specific cardiac simulations through data-assimilation of soft tissue kinematics from dynamic CT scan

IF 7 2区 医学 Q1 BIOLOGY Computers in biology and medicine Pub Date : 2025-03-01 DOI:10.1016/j.compbiomed.2025.109876
Martino Andrea Scarpolini , Giulia Piumini , Emanuele Gasparotti , Erica Maffei , Filippo Cademartiri , Simona Celi , Francesco Viola
{"title":"Guiding patient-specific cardiac simulations through data-assimilation of soft tissue kinematics from dynamic CT scan","authors":"Martino Andrea Scarpolini ,&nbsp;Giulia Piumini ,&nbsp;Emanuele Gasparotti ,&nbsp;Erica Maffei ,&nbsp;Filippo Cademartiri ,&nbsp;Simona Celi ,&nbsp;Francesco Viola","doi":"10.1016/j.compbiomed.2025.109876","DOIUrl":null,"url":null,"abstract":"<div><div>Fluid–structure interaction (FSI) can be key in the generation of accurate digital replica of cardiovascular systems. To personalize these models, however, several patient-specific parameters need to be measured, which can be challenging to accomplish in a non-invasive manner. Alternatively, the cardiac kinematics of the patient can be extracted from imaging data and then directly imposed as a dynamic boundary condition in the computational model, also incorporating temporal and spatial measurement errors. A more advanced method combines FSI with kinematic driven simulations using data-assimilation. Despite its potential, the application of this technique to complex multi-physics cardiovascular simulations remains limited. In this study, we develop an FSI model of a patient’s left ventricle (LV) and aorta, personalized with dynamic imaging data using a Nudging algorithm—a data assimilation technique—which is tailored to each cardiac chamber. In particular, for the LV, which embeds small-scale and irregular endocardial structures (higher measurement errors), the active contraction of the patient is replicated primarily using integral measurements (ventricular volume and surface area). On the other hand, the passive motion of the aorta is guided in the simulation relying directly on the local tissue positions from CT scan. The algorithm’s simplicity and zero additional computational cost make it particularly suitable for multi-physics problems. Our results show that the assimilation procedure must be tuned to guide the system toward the measurements within the uncertainty range of the in-vivo data.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"189 ","pages":"Article 109876"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525002276","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fluid–structure interaction (FSI) can be key in the generation of accurate digital replica of cardiovascular systems. To personalize these models, however, several patient-specific parameters need to be measured, which can be challenging to accomplish in a non-invasive manner. Alternatively, the cardiac kinematics of the patient can be extracted from imaging data and then directly imposed as a dynamic boundary condition in the computational model, also incorporating temporal and spatial measurement errors. A more advanced method combines FSI with kinematic driven simulations using data-assimilation. Despite its potential, the application of this technique to complex multi-physics cardiovascular simulations remains limited. In this study, we develop an FSI model of a patient’s left ventricle (LV) and aorta, personalized with dynamic imaging data using a Nudging algorithm—a data assimilation technique—which is tailored to each cardiac chamber. In particular, for the LV, which embeds small-scale and irregular endocardial structures (higher measurement errors), the active contraction of the patient is replicated primarily using integral measurements (ventricular volume and surface area). On the other hand, the passive motion of the aorta is guided in the simulation relying directly on the local tissue positions from CT scan. The algorithm’s simplicity and zero additional computational cost make it particularly suitable for multi-physics problems. Our results show that the assimilation procedure must be tuned to guide the system toward the measurements within the uncertainty range of the in-vivo data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
期刊最新文献
Exploring the potential of direct-acting antivirals against Chikungunya virus through structure-based drug repositioning and molecular dynamic simulations Comprehensive experimental and computational analysis of endemic Allium tuncelianum: Phytochemical profiling, antimicrobial activity, and In silico studies for potential therapeutic applications Automatic cerebral microbleeds detection from MR images via multi-channel and multi-scale CNNs Integrating local and global attention mechanisms for enhanced oral cancer detection and explainability Uncovering the role of TREM-1 in celiac disease: In silico insights into the recognition of gluten-derived peptides and inflammatory mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1