{"title":"Parthenolide ameliorates diabetic retinopathy by suppressing microglia-induced Müller cell gliosis and inflammation via the NF-κB signalling","authors":"Zhiliang Li , Qi Xiong , Qin Li , Lanlan Tang","doi":"10.1016/j.intimp.2025.114219","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetic retinopathy (DR) is characterized by retinal inflammation and gliosis and the interaction between Müller cells and microglia plays a crucial role in DR pathogenesis. A sesquiterpene lactones, Parthenolide (PTL), has potent anti-inflammatory effects. This study aimed to evaluate the efficacy of PTL in ameliorating DR and the underlying mechanisms. A co-culture system of primary Müller cells and microglia under normoglycemic and hyperglycemic conditions was established. The study utilized immunofluorescent staining, Western blot analysis, ELISA, and molecular docking simulations to assess the influence of PTL on cellular interactions and NF-κB signaling modulation. Additionally, an in vivo diabetic mouse model was treated with varying doses of PTL to examine its effects on retinal pathologies, activity of Müller cells and microglia, and inflammatory responses. Co-culture with microglia exacerbated hyperglycemia-induced gliosis in Müller cells, indicated by increased GFAP expression and reduced GLAST and Kir4.1 levels. PTL treatment significantly attenuated these changes, reducing the pro-inflammatory cytokines and inhibiting microglia activation, as evidenced by decreased Iba-1 expression via suppressing NF-κB nuclear translocation. In diabetic mice, PTL demonstrated a dose-dependent protective effect against retinal damage and regulated Müller cell activation by inhibiting NF-κB activation. PTL effectively mitigates DR by suppressing microglia-induced Müller cell gliosis and inflammation, primarily via the NF-κB signaling. The findings highlight the potential of targeting Müller cell-microglia interactions in DR therapy, offering a novel approach to managing this complication. This study underscores the therapeutic promise of PTL in DR treatment, warranting further clinical exploration.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"151 ","pages":"Article 114219"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576925002097","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic retinopathy (DR) is characterized by retinal inflammation and gliosis and the interaction between Müller cells and microglia plays a crucial role in DR pathogenesis. A sesquiterpene lactones, Parthenolide (PTL), has potent anti-inflammatory effects. This study aimed to evaluate the efficacy of PTL in ameliorating DR and the underlying mechanisms. A co-culture system of primary Müller cells and microglia under normoglycemic and hyperglycemic conditions was established. The study utilized immunofluorescent staining, Western blot analysis, ELISA, and molecular docking simulations to assess the influence of PTL on cellular interactions and NF-κB signaling modulation. Additionally, an in vivo diabetic mouse model was treated with varying doses of PTL to examine its effects on retinal pathologies, activity of Müller cells and microglia, and inflammatory responses. Co-culture with microglia exacerbated hyperglycemia-induced gliosis in Müller cells, indicated by increased GFAP expression and reduced GLAST and Kir4.1 levels. PTL treatment significantly attenuated these changes, reducing the pro-inflammatory cytokines and inhibiting microglia activation, as evidenced by decreased Iba-1 expression via suppressing NF-κB nuclear translocation. In diabetic mice, PTL demonstrated a dose-dependent protective effect against retinal damage and regulated Müller cell activation by inhibiting NF-κB activation. PTL effectively mitigates DR by suppressing microglia-induced Müller cell gliosis and inflammation, primarily via the NF-κB signaling. The findings highlight the potential of targeting Müller cell-microglia interactions in DR therapy, offering a novel approach to managing this complication. This study underscores the therapeutic promise of PTL in DR treatment, warranting further clinical exploration.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.