Xiangyun Song, Yihe Fan, Jianwei Li, Yan Zhang, Xinwei Liu, Qaiser Hussain, Jinjing Zhang, Dejie Cui
{"title":"Insight in the characteristics of humic substances with cotton straw derived organic materials amendments","authors":"Xiangyun Song, Yihe Fan, Jianwei Li, Yan Zhang, Xinwei Liu, Qaiser Hussain, Jinjing Zhang, Dejie Cui","doi":"10.1186/s13065-025-01418-0","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon sequestration by application of organic materials and biochar in soil is an important strategy to increase soil organic carbon (SOC), but the stability of SOC, particularly humic substances (HS) vary with the types of organic material. In this study, cotton straw and its derived compost and biochar were added with equivalent carbon content to soil and incubated for 180 days. The structural characteristics of humic acid (HA), fulvic acid (FA) and humin (Hu) were investigated using solid-state <sup>13</sup>C nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy. The results showed that biochar treatment increased the aryl C of HA, FA, and Hu by 1.38%, 1.68%, and 10.46% compared to straw treatment and increased the aryl C of HA, FA, and Hu by 1.46%, 1.99% and 2.01% compared to compost treatment. The O-alkyl C of HA was 10.59% and 10.65% in high biochar/straw and biochar/compost ratios respectively, while it was 9.81% and 9.61% in low biochar/straw and biochar/compost ratios. In addition, the O-alkyl C of FA was 62.83% and 58.48% in high ratios of biochar/straw and biochar/compost, respectively, while it was 55.85% and 55.94% in low ratios of biochar/straw and biochar/compost. These results suggest that biochar is advantageous for aryl C formation of FA and Hu due to its high aryl C content, whereas straw or compost is advantageous for alkyl C formation of HA. The stability of aryl C and O-alkyl C of HA, FA, and Hu can be improved in soils by incorporating biochar in combination with straw or compost.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01418-0","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-025-01418-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon sequestration by application of organic materials and biochar in soil is an important strategy to increase soil organic carbon (SOC), but the stability of SOC, particularly humic substances (HS) vary with the types of organic material. In this study, cotton straw and its derived compost and biochar were added with equivalent carbon content to soil and incubated for 180 days. The structural characteristics of humic acid (HA), fulvic acid (FA) and humin (Hu) were investigated using solid-state 13C nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy. The results showed that biochar treatment increased the aryl C of HA, FA, and Hu by 1.38%, 1.68%, and 10.46% compared to straw treatment and increased the aryl C of HA, FA, and Hu by 1.46%, 1.99% and 2.01% compared to compost treatment. The O-alkyl C of HA was 10.59% and 10.65% in high biochar/straw and biochar/compost ratios respectively, while it was 9.81% and 9.61% in low biochar/straw and biochar/compost ratios. In addition, the O-alkyl C of FA was 62.83% and 58.48% in high ratios of biochar/straw and biochar/compost, respectively, while it was 55.85% and 55.94% in low ratios of biochar/straw and biochar/compost. These results suggest that biochar is advantageous for aryl C formation of FA and Hu due to its high aryl C content, whereas straw or compost is advantageous for alkyl C formation of HA. The stability of aryl C and O-alkyl C of HA, FA, and Hu can be improved in soils by incorporating biochar in combination with straw or compost.
期刊介绍:
BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family.
Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.