Downregulation of RORl via STAT3 and P300 Promotes P38 Pathway- Dependent Lens Epithelial Cells Apoptosis in Age-Related Cataract.

IF 1.6 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical Genetics Pub Date : 2025-02-28 DOI:10.1007/s10528-025-11067-6
Yue Zhang, Yuzhu Hu, Dongmei Su, Yanjiang Fu, Xiaoya Chen, Xiao Zhang, Shunfei Zheng, Xu Ma, Shanshan Hu
{"title":"Downregulation of RORl via STAT3 and P300 Promotes P38 Pathway- Dependent Lens Epithelial Cells Apoptosis in Age-Related Cataract.","authors":"Yue Zhang, Yuzhu Hu, Dongmei Su, Yanjiang Fu, Xiaoya Chen, Xiao Zhang, Shunfei Zheng, Xu Ma, Shanshan Hu","doi":"10.1007/s10528-025-11067-6","DOIUrl":null,"url":null,"abstract":"<p><p>Lens Epithelial Cells (LECs) apoptosis is a critical driving factor of age-related cataract (ARC), but the specific molecular mechanisms remain undefined. Herein, a novel target of ROR1 regulation was identified, the mechanism was elucidated by which ROR1 and its associated pathway proteins influence hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>)-induced apoptosis of LECs in ARC. We found decreased ROR1 expression in human cataract lens capsules compared to normal ones, the trend was also observed in young and old mice. Experiments including CCK8, Hoechst 33,342 staining, and Western blot analysis confirmed that reduced ROR1 levels were linked to H<sub>2</sub>O<sub>2</sub>-induced apoptosis in HLEB3 cells. To investigate its effects on cell viability and apoptosis, we created a ROR1 interference plasmid and an overexpression plasmid. The overexpression of ROR1 effectively inhibited H<sub>2</sub>O<sub>2</sub>-induced apoptosis of HLEB3 cells while ROR1 knockdown lowered the viability and increased the apoptosis of HLEB3 cells. Additionally, increased P38 phosphorylation was identified as a contributor to lens epithelial cell apoptosis and ARC, with ROR1 influencing this through the phosphorylation of the P38. Similarly, the relationships between P300 and STAT3, upstream of ROR1, in apoptosis of LECs and ARC were explored, and it was found that P300 and STAT3 were negatively correlated with apoptosis of LECs and ARC. In addition, the double luciferase report showed that P300 and STAT3 synergistically up-regulated the expression of ROR1. Overall, this study demonstrates that the STAT3/ROR1/P38 pathway mitigates apoptosis of LECs in ARC progression, offering a novel strategy for ARC prevention and treatment in clinical settings.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-025-11067-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lens Epithelial Cells (LECs) apoptosis is a critical driving factor of age-related cataract (ARC), but the specific molecular mechanisms remain undefined. Herein, a novel target of ROR1 regulation was identified, the mechanism was elucidated by which ROR1 and its associated pathway proteins influence hydrogen peroxide (H2O2)-induced apoptosis of LECs in ARC. We found decreased ROR1 expression in human cataract lens capsules compared to normal ones, the trend was also observed in young and old mice. Experiments including CCK8, Hoechst 33,342 staining, and Western blot analysis confirmed that reduced ROR1 levels were linked to H2O2-induced apoptosis in HLEB3 cells. To investigate its effects on cell viability and apoptosis, we created a ROR1 interference plasmid and an overexpression plasmid. The overexpression of ROR1 effectively inhibited H2O2-induced apoptosis of HLEB3 cells while ROR1 knockdown lowered the viability and increased the apoptosis of HLEB3 cells. Additionally, increased P38 phosphorylation was identified as a contributor to lens epithelial cell apoptosis and ARC, with ROR1 influencing this through the phosphorylation of the P38. Similarly, the relationships between P300 and STAT3, upstream of ROR1, in apoptosis of LECs and ARC were explored, and it was found that P300 and STAT3 were negatively correlated with apoptosis of LECs and ARC. In addition, the double luciferase report showed that P300 and STAT3 synergistically up-regulated the expression of ROR1. Overall, this study demonstrates that the STAT3/ROR1/P38 pathway mitigates apoptosis of LECs in ARC progression, offering a novel strategy for ARC prevention and treatment in clinical settings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 STAT3 和 P300 下调 RORl 可促进老年性白内障中 P38 通路依赖的晶状体上皮细胞凋亡
晶状体上皮细胞(Lens Epithelial Cells, LECs)凋亡是老年性白内障(age-related cataract, ARC)的重要驱动因素,但具体的分子机制尚未明确。本研究发现了一个新的ROR1调控靶点,并阐明了ROR1及其相关通路蛋白影响过氧化氢(H2O2)诱导的ARC中LECs凋亡的机制。我们发现,与正常小鼠相比,人白内障晶状体囊中ROR1的表达降低,在年轻和年老小鼠中也有这种趋势。CCK8、Hoechst 33,342染色、Western blot等实验证实,ROR1水平降低与h2o2诱导的HLEB3细胞凋亡有关。为了研究其对细胞活力和凋亡的影响,我们构建了ROR1干扰质粒和过表达质粒。ROR1过表达可有效抑制h2o2诱导的HLEB3细胞凋亡,而ROR1敲低可降低HLEB3细胞活力,增加HLEB3细胞凋亡。此外,P38磷酸化的增加被确定为晶状体上皮细胞凋亡和ARC的一个因素,ROR1通过P38的磷酸化影响这一点。同样,我们也探索了ROR1上游的P300与STAT3在LECs和ARC凋亡中的关系,发现P300和STAT3与LECs和ARC的凋亡呈负相关。此外,双荧光素酶报告显示,P300和STAT3协同上调ROR1的表达。总的来说,本研究表明STAT3/ROR1/P38通路减轻了ARC进展过程中LECs的凋亡,为临床预防和治疗ARC提供了一种新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
期刊最新文献
Genetic Variants in EMT-Related lncRNAs Modulate the Risk of Colorectal Cancer in the Chinese Population. Integrating RNA-seq and Single-Cell RNA-seq to Uncover Transcriptional Signature of Fibroblasts in Oral Squamous Cell Carcinoma. FABP7 Enhances Endometrial Cancer Cell Migration and Stemness by Activating the Wnt/β-catenin Pathway. Transcription Activation of DEPDC1B Upon EBF1 Loss Contributes to Cell Cycle Progression and Epithelial-Mesenchymal Transition in Colon Adenocarcinoma. Do Genomic Patterns and Fibonacci-Like Regularity Hold the Key to Reproductive Fitness in Livestock?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1