Exploring temporal information dynamics in Spiking Neural Networks: Fast Temporal Efficient Training

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Neuroscience Methods Pub Date : 2025-02-25 DOI:10.1016/j.jneumeth.2025.110401
Changjiang Han , Li-Juan Liu , Hamid Reza Karimi
{"title":"Exploring temporal information dynamics in Spiking Neural Networks: Fast Temporal Efficient Training","authors":"Changjiang Han ,&nbsp;Li-Juan Liu ,&nbsp;Hamid Reza Karimi","doi":"10.1016/j.jneumeth.2025.110401","DOIUrl":null,"url":null,"abstract":"<div><h3>Background:</h3><div>Spiking Neural Networks (SNNs) hold significant potential in brain simulation and temporal data processing. While recent research has focused on developing neuron models and leveraging temporal dynamics to enhance performance, there is a lack of explicit studies on neuromorphic datasets. This research aims to address this question by exploring temporal information dynamics in SNNs.</div></div><div><h3>New Method:</h3><div>To quantify the dynamics of temporal information during training, this study measures the Fisher information in SNNs trained on neuromorphic datasets. The information centroid is calculated to analyze the influence of key factors, such as the parameter <span><math><mi>k</mi></math></span>, on temporal information dynamics.</div></div><div><h3>Results:</h3><div>Experimental results reveal that the information centroid exhibits two distinct behaviors: stability and fluctuation. This study terms this phenomenon the Stable Information Centroid (SIC), which is closely related to the parameter <span><math><mi>k</mi></math></span>. Based on these findings, we propose the Fast Temporal Efficient Training (FTET) algorithm.</div></div><div><h3>Comparison with Existing Methods:</h3><div>Firstly, the method proposed in this paper does not require the introduction of additional complex training techniques. Secondly, it can reduce the computational load by 30% in the final 50 epochs. However, the drawback is the issue of slow convergence during the early stages of training.</div></div><div><h3>Conclusion:</h3><div>This study reveals that the learning processes of SNNs vary across different datasets, providing new insights into the mechanisms of human brain learning. A limitation is the restricted sample size, focusing only on a few datasets and image classification tasks. The code is available at <span><span>https://github.com/gtii123/fast-temporal-efficient-training</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"417 ","pages":"Article 110401"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027025000421","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background:

Spiking Neural Networks (SNNs) hold significant potential in brain simulation and temporal data processing. While recent research has focused on developing neuron models and leveraging temporal dynamics to enhance performance, there is a lack of explicit studies on neuromorphic datasets. This research aims to address this question by exploring temporal information dynamics in SNNs.

New Method:

To quantify the dynamics of temporal information during training, this study measures the Fisher information in SNNs trained on neuromorphic datasets. The information centroid is calculated to analyze the influence of key factors, such as the parameter k, on temporal information dynamics.

Results:

Experimental results reveal that the information centroid exhibits two distinct behaviors: stability and fluctuation. This study terms this phenomenon the Stable Information Centroid (SIC), which is closely related to the parameter k. Based on these findings, we propose the Fast Temporal Efficient Training (FTET) algorithm.

Comparison with Existing Methods:

Firstly, the method proposed in this paper does not require the introduction of additional complex training techniques. Secondly, it can reduce the computational load by 30% in the final 50 epochs. However, the drawback is the issue of slow convergence during the early stages of training.

Conclusion:

This study reveals that the learning processes of SNNs vary across different datasets, providing new insights into the mechanisms of human brain learning. A limitation is the restricted sample size, focusing only on a few datasets and image classification tasks. The code is available at https://github.com/gtii123/fast-temporal-efficient-training.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
背景:尖峰神经网络(SNN尖峰神经网络(SNN)在大脑模拟和时间数据处理方面具有巨大潜力。最近的研究主要集中在开发神经元模型和利用时间动态来提高性能,但缺乏对神经形态数据集的明确研究。本研究旨在通过探索 SNN 中的时间信息动态来解决这一问题:为了量化训练过程中的时间信息动态,本研究测量了在神经形态数据集上训练的 SNNs 中的 Fisher 信息。新方法:为了量化训练过程中的时间信息动态,本研究测量了在神经形态数据集上训练的 SNN 的费雪信息,并计算了信息中心点,以分析参数 k 等关键因素对时间信息动态的影响:实验结果表明,信息中心点表现出两种截然不同的行为:稳定和波动。基于这些发现,我们提出了快速时态高效训练(FTET)算法:首先,本文提出的方法不需要引入额外的复杂训练技术。其次,在最后 50 个历元中,它可以减少 30% 的计算负荷。但缺点是训练初期收敛速度较慢:本研究揭示了 SNN 在不同数据集上的学习过程各不相同,为了解人脑学习机制提供了新的视角。该研究的局限性在于样本量有限,只关注了少数数据集和图像分类任务。代码见 https://github.com/gtii123/fast-temporal-efficient-training。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
期刊最新文献
Evaluating the efficacy of non-invasive brain stimulation techniques in managing pediatric epilepsy. An immunohistochemical protocol for visualizing adrenergic receptor subtypes in the rhesus macaque hippocampus The 3D Vertical Maze: A new model system for studying the interactions between social and spatial cognition. A 3D-printed modular implant for extracellular recordings Exploring temporal information dynamics in Spiking Neural Networks: Fast Temporal Efficient Training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1