Comparative Effects of Probiotics and Paraprobiotics Derived from Lactiplantibacillus plantarum, Latilactobacillus sakei, and Limosilactobacillus reuteri in a DSS-Induced Ulcerative Colitis Mouse Model.

IF 2.5 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of microbiology and biotechnology Pub Date : 2025-02-25 DOI:10.4014/jmb.2411.11045
Yun Young Kang, Hyo Jeong Song, So Young Park, Dong Nyoung Oh, Ga Yeong Kim, Na Yeong Been, Da Yeong Kim, Eun Ji Lee, Bo-Hye Nam, Jong-Min Lee
{"title":"Comparative Effects of Probiotics and Paraprobiotics Derived from <i>Lactiplantibacillus plantarum</i>, <i>Latilactobacillus sakei</i>, and <i>Limosilactobacillus reuteri</i> in a DSS-Induced Ulcerative Colitis Mouse Model.","authors":"Yun Young Kang, Hyo Jeong Song, So Young Park, Dong Nyoung Oh, Ga Yeong Kim, Na Yeong Been, Da Yeong Kim, Eun Ji Lee, Bo-Hye Nam, Jong-Min Lee","doi":"10.4014/jmb.2411.11045","DOIUrl":null,"url":null,"abstract":"<p><p>Live biotherapeutic products, represented by probiotics with disease-mitigating or therapeutic effects, face significant limitations in achieving stable colonization in the gut through oral administration. However, paraprobiotics, which consist of dead or inactivated microbial cells derived from probiotics, can provide comparable health benefits while overcoming the limitations associated with live biotherapeutic products. Therefore, the purpose of this study was to quantitatively compare and analyze the effects of probiotics, which are gaining attention as treatments for inflammatory bowel diseases, and their paraprobiotic counterparts on the alleviation of ulcerative colitis. In <i>in vitro</i> evaluations revealed that the paraprobiotics derived from <i>Lactiplantibacillus plantarum</i> MGEL20154, <i>Latilactobacillus sakei</i> MGEL23040, and <i>Limosilactobacillus reuteri</i> MGEL21001 exhibited equal or significantly enhanced activities in terms of antioxidant properties, anti-inflammatory effects, and barrier integrity enhancement compared to their probiotic counterparts. Furthermore, consistent with <i>in vitro</i> findings, both probiotics and paraprobiotics effectively improved histological scores and reduced myeloperoxidase levels in a DSS-induced ulcerative colitis mouse model. Notably, paraprobiotics derived from <i>L. plantarum</i> MGEL20154 and <i>L. reuteri</i> MGEL21001 demonstrated significantly enhanced efficacy in restoring tight junctions, promoting mucin secretion, and reducing inflammation in colonic lesion tissues compared to their probiotic forms. Our results suggest that these paraprobiotics may serve as more suitable agents for alleviating and treating ulcerative colitis, addressing limitations associated with probiotics, such as low survival rates, instability, antibiotic susceptibility, and the potential induction of excessive inflammatory responses.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"35 ","pages":"e2411045"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2411.11045","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Live biotherapeutic products, represented by probiotics with disease-mitigating or therapeutic effects, face significant limitations in achieving stable colonization in the gut through oral administration. However, paraprobiotics, which consist of dead or inactivated microbial cells derived from probiotics, can provide comparable health benefits while overcoming the limitations associated with live biotherapeutic products. Therefore, the purpose of this study was to quantitatively compare and analyze the effects of probiotics, which are gaining attention as treatments for inflammatory bowel diseases, and their paraprobiotic counterparts on the alleviation of ulcerative colitis. In in vitro evaluations revealed that the paraprobiotics derived from Lactiplantibacillus plantarum MGEL20154, Latilactobacillus sakei MGEL23040, and Limosilactobacillus reuteri MGEL21001 exhibited equal or significantly enhanced activities in terms of antioxidant properties, anti-inflammatory effects, and barrier integrity enhancement compared to their probiotic counterparts. Furthermore, consistent with in vitro findings, both probiotics and paraprobiotics effectively improved histological scores and reduced myeloperoxidase levels in a DSS-induced ulcerative colitis mouse model. Notably, paraprobiotics derived from L. plantarum MGEL20154 and L. reuteri MGEL21001 demonstrated significantly enhanced efficacy in restoring tight junctions, promoting mucin secretion, and reducing inflammation in colonic lesion tissues compared to their probiotic forms. Our results suggest that these paraprobiotics may serve as more suitable agents for alleviating and treating ulcerative colitis, addressing limitations associated with probiotics, such as low survival rates, instability, antibiotic susceptibility, and the potential induction of excessive inflammatory responses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of microbiology and biotechnology
Journal of microbiology and biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
5.50
自引率
3.60%
发文量
151
审稿时长
2 months
期刊介绍: The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.
期刊最新文献
Corrigendum to: Effect of Light Regime on Candidatus Puniceispirillum marinum IMCC1322 in Nutrient-Replete Conditions. Amelioration of Astrocytic Dysfunction via AQP4/LRP1 Pathway by Zizania latifolia and Tricin in C6 Cells Exposed to Amyloid β and High-Dose Insulin and in Mice Treated with Scopolamine. Characterization of Protosiphon botryoides KNUA219 Isolated from Dokdo Island as a Potential Biofuel Resource. Comparative Effects of Probiotics and Paraprobiotics Derived from Lactiplantibacillus plantarum, Latilactobacillus sakei, and Limosilactobacillus reuteri in a DSS-Induced Ulcerative Colitis Mouse Model. Comparative Metabolomics of Clostridium acetobutylicum ATCC824 and its Engineered Strain, C. acetobutylicum DG1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1