Watershed urbanization alters aquatic plant mycobiomes through the loss of rare taxa.

IF 2.6 2区 生物学 Q2 MYCOLOGY Mycologia Pub Date : 2025-02-27 DOI:10.1080/00275514.2025.2462525
Jacob Mora, Matthew Olson, Sara S Rocks, Geoffrey Zahn
{"title":"Watershed urbanization alters aquatic plant mycobiomes through the loss of rare taxa.","authors":"Jacob Mora, Matthew Olson, Sara S Rocks, Geoffrey Zahn","doi":"10.1080/00275514.2025.2462525","DOIUrl":null,"url":null,"abstract":"<p><p>Urban expansion, projected to triple globally from 2000 to 2030, significantly impacts biodiversity and ecosystem processes, including those of microbial communities. Microbes are key drivers of many ecosystem processes and affect the fitness and resilience of plants and animals, but research on the biotic effects of urbanization has focused primarily on macroorganisms. This study investigates host-associated fungal communities in the pollution-tolerant aquatic plant <i>Ranunculus aquatilis</i> along an urbanization gradient in the Provo River, Utah, USA, a rapidly urbanizing region. We collected plant and adjacent water samples from 10 locations along the river, spanning from rural to urbanized areas within a single watershed, and conducted DNA amplicon sequencing to characterize fungal community composition. Our results show a significant decline in fungal alpha diversity correlated with increased urbanization metrics such as impervious surface area and developed land cover. Specifically, fungal richness and Shannon diversity decreased as urbanization intensified, driven primarily by a reduction in rare taxa. Despite a stable core microbiome dominated by a few taxa, the overall community structure varied significantly along the urbanization gradient, with notable shifts in dominant fungal taxa. Contrary to expectations, no detectable levels of heavy metals were found in water samples at any location, suggesting that other urbanization-related factors, potentially including organic pollutants or plant stress responses, influence fungal endophyte communities. Our findings underscore the need for further investigation into the mechanisms driving these patterns, particularly the roles of organic pollution, nutrient loads, and plant stress. As global urbanized watershed area grows, the fate of aquatic plant life is tied to their fungal community. Understanding these interactions is crucial for predicting the impacts of continued urbanization on freshwater ecosystems.</p>","PeriodicalId":18779,"journal":{"name":"Mycologia","volume":" ","pages":"1-11"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycologia","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/00275514.2025.2462525","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Urban expansion, projected to triple globally from 2000 to 2030, significantly impacts biodiversity and ecosystem processes, including those of microbial communities. Microbes are key drivers of many ecosystem processes and affect the fitness and resilience of plants and animals, but research on the biotic effects of urbanization has focused primarily on macroorganisms. This study investigates host-associated fungal communities in the pollution-tolerant aquatic plant Ranunculus aquatilis along an urbanization gradient in the Provo River, Utah, USA, a rapidly urbanizing region. We collected plant and adjacent water samples from 10 locations along the river, spanning from rural to urbanized areas within a single watershed, and conducted DNA amplicon sequencing to characterize fungal community composition. Our results show a significant decline in fungal alpha diversity correlated with increased urbanization metrics such as impervious surface area and developed land cover. Specifically, fungal richness and Shannon diversity decreased as urbanization intensified, driven primarily by a reduction in rare taxa. Despite a stable core microbiome dominated by a few taxa, the overall community structure varied significantly along the urbanization gradient, with notable shifts in dominant fungal taxa. Contrary to expectations, no detectable levels of heavy metals were found in water samples at any location, suggesting that other urbanization-related factors, potentially including organic pollutants or plant stress responses, influence fungal endophyte communities. Our findings underscore the need for further investigation into the mechanisms driving these patterns, particularly the roles of organic pollution, nutrient loads, and plant stress. As global urbanized watershed area grows, the fate of aquatic plant life is tied to their fungal community. Understanding these interactions is crucial for predicting the impacts of continued urbanization on freshwater ecosystems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Mycologia
Mycologia 生物-真菌学
CiteScore
6.20
自引率
3.60%
发文量
56
审稿时长
4-8 weeks
期刊介绍: International in coverage, Mycologia presents recent advances in mycology, emphasizing all aspects of the biology of Fungi and fungus-like organisms, including Lichens, Oomycetes and Slime Molds. The Journal emphasizes subjects including applied biology, biochemistry, cell biology, development, ecology, evolution, genetics, genomics, molecular biology, morphology, new techniques, animal or plant pathology, phylogenetics, physiology, aspects of secondary metabolism, systematics, and ultrastructure. In addition to research articles, reviews and short notes, Mycologia also includes invited papers based on presentations from the Annual Conference of the Mycological Society of America, such as Karling Lectures or Presidential Addresses.
期刊最新文献
Ubiquity and diversity of Basidiobolus across amphibian species inhabiting an urbanization gradient. Use their names: there are no basal, lower, or early diverging fungi. Watershed urbanization alters aquatic plant mycobiomes through the loss of rare taxa. Morphological and molecular characterization of Curvularia species from Iran, with description of two novel species and two new records. Aquatic Xylaria: an exotic fungus introduced into the United States on aquarium decorative wood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1