Extinction of contextual fear memory is facilitated in TRPM2 knockout mice.

IF 3.3 3区 医学 Q2 NEUROSCIENCES Molecular Brain Pub Date : 2025-02-27 DOI:10.1186/s13041-025-01181-2
Seung Yeon Ko, Do Gyeong Kim, Huiju Lee, Sung Jun Jung, Hyeon Son
{"title":"Extinction of contextual fear memory is facilitated in TRPM2 knockout mice.","authors":"Seung Yeon Ko, Do Gyeong Kim, Huiju Lee, Sung Jun Jung, Hyeon Son","doi":"10.1186/s13041-025-01181-2","DOIUrl":null,"url":null,"abstract":"<p><p>Transient receptor potential melastatin type 2 (TRPM2) is a nonselective cation channel involved in synaptic plasticity. We investigated its role in contextual fear conditioning and extinction of conditioned fear using Trpm2-deficient (Trpm2<sup>-/-</sup>) mice. Trpm2<sup>-/-</sup> mice exhibited reduced acquisition of contextual fear memory during conditioning but had an intact freezing response to conditioning context 24 h after conditioning. They also showed a reduced freezing response to extinction training, indicating facilitated extinction. Consistent with this, infusion of flufenamic acid (FFA), a TRPM2 antagonist, into the dentate gyrus (DG) of the hippocampus in fear-conditioned mice facilitated extinction of contextual fear. The enhanced extinction in Trpm2<sup>-/-</sup> and FFA-treated mice was associated with down-regulation of immediate-early genes (IEGs) including Npas4, c-Fos, Arc and Egr1 in the hippocampus after extinction training. Our results indicate that TRPM2 plays a positive role in retention of contextual fear memory by modulating neuronal activity in the hippocampus, and suggest that TRPM2 activity could potentially be targeted to strengthen extinction-based exposure therapies for post-traumatic stress disorder (PTSD).</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"18 1","pages":"16"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869647/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-025-01181-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Transient receptor potential melastatin type 2 (TRPM2) is a nonselective cation channel involved in synaptic plasticity. We investigated its role in contextual fear conditioning and extinction of conditioned fear using Trpm2-deficient (Trpm2-/-) mice. Trpm2-/- mice exhibited reduced acquisition of contextual fear memory during conditioning but had an intact freezing response to conditioning context 24 h after conditioning. They also showed a reduced freezing response to extinction training, indicating facilitated extinction. Consistent with this, infusion of flufenamic acid (FFA), a TRPM2 antagonist, into the dentate gyrus (DG) of the hippocampus in fear-conditioned mice facilitated extinction of contextual fear. The enhanced extinction in Trpm2-/- and FFA-treated mice was associated with down-regulation of immediate-early genes (IEGs) including Npas4, c-Fos, Arc and Egr1 in the hippocampus after extinction training. Our results indicate that TRPM2 plays a positive role in retention of contextual fear memory by modulating neuronal activity in the hippocampus, and suggest that TRPM2 activity could potentially be targeted to strengthen extinction-based exposure therapies for post-traumatic stress disorder (PTSD).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Brain
Molecular Brain NEUROSCIENCES-
CiteScore
7.30
自引率
0.00%
发文量
97
审稿时长
>12 weeks
期刊介绍: Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings. Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.
期刊最新文献
Extinction of contextual fear memory is facilitated in TRPM2 knockout mice. The properties of TREM1 and its emerging role in pain-related diseases. Roles of mediodorsal thalamus in observational fear-related neural activity in mouse anterior cingulate cortex. Sodium butyrate attenuates microglia-mediated neuroinflammation by modulating the TLR4/MyD88/NF-κB pathway and microbiome-gut-brain axis in cardiac arrest mice. Key mechanisms of angiogenesis in the infarct core: association of macrophage infiltration with venogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1