{"title":"Symmetry to asymmetry: innovative evolvement of a gas-liquid-solid (GLS) separator in UASB/EGSB reactors on a new perspective.","authors":"Feilin Hao, Mingwei Shen","doi":"10.2166/wst.2025.018","DOIUrl":null,"url":null,"abstract":"<p><p>The transition from up-flow anaerobic sludge blanket (UASB) reactors to expanded granular sludge bed (EGSB) reactors presents challenges for traditional symmetric critical gas-liquid-solid (GLS) separators, including high spatial occupation, fluid-energy consumption, and reduced separation efficiency. This study introduced a novel GLS separation mechanism based on vortex circulation-induced deposition, agglomeration, and flowback of solid separation. Leveraging this mechanism, an innovative asymmetrical laboratory-scale GLS separator was developed and tested with both granular and flocculent sludge. The new prototype demonstrates superior solid separation performance, achieving 98.3% for granular sludge and 96.0% for flocculent sludge. It features a simple structure and optimized flow paths, resulting in approximately 30% reduction in height and 14.8% less material consumption compared to existing models. Flocculent sludge shows greater sensitivity to operational factors than granular sludge, with higher sludge concentration and smaller fragment size being preferable for high separation efficiency. This mechanism is validated by experimental observations and computational fluid dynamics (CFD) simulations, providing a new perspective on GLS separation and establishing the new model as a promising candidate for UASB/EGSB bio-reactors.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 4","pages":"400-412"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2025.018","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The transition from up-flow anaerobic sludge blanket (UASB) reactors to expanded granular sludge bed (EGSB) reactors presents challenges for traditional symmetric critical gas-liquid-solid (GLS) separators, including high spatial occupation, fluid-energy consumption, and reduced separation efficiency. This study introduced a novel GLS separation mechanism based on vortex circulation-induced deposition, agglomeration, and flowback of solid separation. Leveraging this mechanism, an innovative asymmetrical laboratory-scale GLS separator was developed and tested with both granular and flocculent sludge. The new prototype demonstrates superior solid separation performance, achieving 98.3% for granular sludge and 96.0% for flocculent sludge. It features a simple structure and optimized flow paths, resulting in approximately 30% reduction in height and 14.8% less material consumption compared to existing models. Flocculent sludge shows greater sensitivity to operational factors than granular sludge, with higher sludge concentration and smaller fragment size being preferable for high separation efficiency. This mechanism is validated by experimental observations and computational fluid dynamics (CFD) simulations, providing a new perspective on GLS separation and establishing the new model as a promising candidate for UASB/EGSB bio-reactors.
期刊介绍:
Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.