Mehdi Khoury, Barry Evans, Tavishi Guleria, Joep Van Der Broeke, Lydia Vamvakeridou-Lyroudia, Otto Chen, Navonil Mustafee, Albert Chen, Slobodan Djordjevic, Dragan Savic
{"title":"Towards the development of an online platform for an industry metabolic pathway.","authors":"Mehdi Khoury, Barry Evans, Tavishi Guleria, Joep Van Der Broeke, Lydia Vamvakeridou-Lyroudia, Otto Chen, Navonil Mustafee, Albert Chen, Slobodan Djordjevic, Dragan Savic","doi":"10.2166/wst.2025.020","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents the design of a web-based decision co-creation platform to showcase water treatment technologies connected via industrial symbiosis for a circular economy approach. The platform is developed as part of the EU H2020-funded ULTIMATE project. This system initially investigates three case studies focusing respectively on: water and nutrient recovery in greenhouses, pre-treatment of wastewater from olive mills before integration into communal wastewater systems, and value-added compound recovery from wastewater in a juice factory. These cases are then merged into one abstract composite example showing all three aspects of the problem, connecting greenhouses, juice factories, and olive mills, describing a pioneering form of industrial 'metabolic network' of the circular economy. This work describes the modelling framework, the online platform and the interactive visualisations that allow users to explore the industrial symbiosis configurations enabled by the metabolic pathway. The platform thus serves as a decision support tool that merges circular economy and industrial symbiosis, as well as a pedagogical tool.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 4","pages":"382-399"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2025.020","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the design of a web-based decision co-creation platform to showcase water treatment technologies connected via industrial symbiosis for a circular economy approach. The platform is developed as part of the EU H2020-funded ULTIMATE project. This system initially investigates three case studies focusing respectively on: water and nutrient recovery in greenhouses, pre-treatment of wastewater from olive mills before integration into communal wastewater systems, and value-added compound recovery from wastewater in a juice factory. These cases are then merged into one abstract composite example showing all three aspects of the problem, connecting greenhouses, juice factories, and olive mills, describing a pioneering form of industrial 'metabolic network' of the circular economy. This work describes the modelling framework, the online platform and the interactive visualisations that allow users to explore the industrial symbiosis configurations enabled by the metabolic pathway. The platform thus serves as a decision support tool that merges circular economy and industrial symbiosis, as well as a pedagogical tool.
期刊介绍:
Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.