Awake brain MRSI reveals anesthetic sensitivity and regional aging effects on [13C]bicarbonate metabolism in mice.

Frontiers in neuroimaging Pub Date : 2025-02-12 eCollection Date: 2025-01-01 DOI:10.3389/fnimg.2025.1506126
Maiko Ono, Rena Kono, Kosei Hirata, Keita Saito, Motonao Nakao, Yoichi Takakusagi, Rikita Araki, Akira Sumiyoshi, Yuhei Takado
{"title":"Awake brain MRSI reveals anesthetic sensitivity and regional aging effects on [<sup>13</sup>C]bicarbonate metabolism in mice.","authors":"Maiko Ono, Rena Kono, Kosei Hirata, Keita Saito, Motonao Nakao, Yoichi Takakusagi, Rikita Araki, Akira Sumiyoshi, Yuhei Takado","doi":"10.3389/fnimg.2025.1506126","DOIUrl":null,"url":null,"abstract":"<p><p>Abnormalities and alterations in the glycolytic pathway in the pathology of neurodegenerative diseases and brain aging have received much attention, as clinical applications of proton-based magnetic resonance spectroscopy (MRS) have recently illuminated the elevation of lactate concentrations in the brains of patients with neurodegenerative diseases, including Alzheimer's disease. Hyperpolarized [1-<sup>13</sup>C]pyruvate MRS has shown promise for neurological applications because it enables the real-time <i>in vivo</i> detection of glycolysis and oxidative phosphorylation flux. In studies of the mouse brain using hyperpolarized [1-<sup>13</sup>C]pyruvate, there are few reports that the signal of [<sup>13</sup>C]bicarbonate, a product of oxidative phosphorylation metabolized from [1-<sup>13</sup>C]pyruvate, was detected using MR spectroscopic imaging (MRSI) that allows spatial mapping of metabolism, although there have been reports of [<sup>13</sup>C]bicarbonate signals being detected by pulse-acquire sequences in the entire brain. In the present study, we compared hyperpolarized [1-<sup>13</sup>C]pyruvate metabolism between the brains of awake and isoflurane-anesthetized mice using a custom-made awake mouse restraint device with MRSI. Although the signal for [1-<sup>13</sup>C]lactate, a product of glycolysis metabolized from [1-<sup>13</sup>C]pyruvate, was detectable in multiple brain regions that include the orbitofrontal cortex and hippocampus in both awake and anesthetized mice, the signal for [<sup>13</sup>C]bicarbonate metabolized from [1-<sup>13</sup>C]pyruvate was only detectable in the brains of awake mice. Moreover, a comparison of hyperpolarized [1-<sup>13</sup>C]pyruvate metabolism in young and aged mouse brains using awake MRSI detected age-related decreases in oxidative phosphorylation flux in brain regions that include the hippocampus with variations in the extent of these changes across different brain regions. These results demonstrate that hyperpolarized [1-<sup>13</sup>C]pyruvate MRSI under awake conditions is useful for the spatial detection of abnormalities and alterations in glycolysis and oxidative phosphorylation flux in the brains of mice. Thus, the use of hyperpolarized [1-<sup>13</sup>C]pyruvate MRSI has potential in pathological and mechanistic studies of brain diseases and brain aging.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"4 ","pages":"1506126"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861090/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnimg.2025.1506126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abnormalities and alterations in the glycolytic pathway in the pathology of neurodegenerative diseases and brain aging have received much attention, as clinical applications of proton-based magnetic resonance spectroscopy (MRS) have recently illuminated the elevation of lactate concentrations in the brains of patients with neurodegenerative diseases, including Alzheimer's disease. Hyperpolarized [1-13C]pyruvate MRS has shown promise for neurological applications because it enables the real-time in vivo detection of glycolysis and oxidative phosphorylation flux. In studies of the mouse brain using hyperpolarized [1-13C]pyruvate, there are few reports that the signal of [13C]bicarbonate, a product of oxidative phosphorylation metabolized from [1-13C]pyruvate, was detected using MR spectroscopic imaging (MRSI) that allows spatial mapping of metabolism, although there have been reports of [13C]bicarbonate signals being detected by pulse-acquire sequences in the entire brain. In the present study, we compared hyperpolarized [1-13C]pyruvate metabolism between the brains of awake and isoflurane-anesthetized mice using a custom-made awake mouse restraint device with MRSI. Although the signal for [1-13C]lactate, a product of glycolysis metabolized from [1-13C]pyruvate, was detectable in multiple brain regions that include the orbitofrontal cortex and hippocampus in both awake and anesthetized mice, the signal for [13C]bicarbonate metabolized from [1-13C]pyruvate was only detectable in the brains of awake mice. Moreover, a comparison of hyperpolarized [1-13C]pyruvate metabolism in young and aged mouse brains using awake MRSI detected age-related decreases in oxidative phosphorylation flux in brain regions that include the hippocampus with variations in the extent of these changes across different brain regions. These results demonstrate that hyperpolarized [1-13C]pyruvate MRSI under awake conditions is useful for the spatial detection of abnormalities and alterations in glycolysis and oxidative phosphorylation flux in the brains of mice. Thus, the use of hyperpolarized [1-13C]pyruvate MRSI has potential in pathological and mechanistic studies of brain diseases and brain aging.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Case report: Re-evaluating reversibility of cytotoxic lesions of the corpus callosum. T1-relaxation times along the corticospinal tract as a diagnostic marker in patients with amyotrophic lateral sclerosis. Editorial: Role of neuroimaging in the diagnosis and treatment of rare diseases. Awake brain MRSI reveals anesthetic sensitivity and regional aging effects on [13C]bicarbonate metabolism in mice. Associations between cerebral blood flow and progression of white matter hyperintensities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1