Natural language processing of electronic health records for early detection of cognitive decline: a systematic review

IF 15.1 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES NPJ Digital Medicine Pub Date : 2025-03-01 DOI:10.1038/s41746-025-01527-z
Ravi Shankar, Anjali Bundele, Amartya Mukhopadhyay
{"title":"Natural language processing of electronic health records for early detection of cognitive decline: a systematic review","authors":"Ravi Shankar, Anjali Bundele, Amartya Mukhopadhyay","doi":"10.1038/s41746-025-01527-z","DOIUrl":null,"url":null,"abstract":"<p>This systematic review evaluated natural language processing (NLP) approaches for detecting cognitive impairment in electronic health record clinical notes. Following PRISMA guidelines, we analyzed 18 studies (<i>n</i> = 1,064,530) that employed rule-based algorithms (67%), traditional machine learning (28%), and deep learning (17%). NLP models demonstrated robust performance in identifying cognitive decline, with median sensitivity 0.88 (IQR 0.74–0.91) and specificity 0.96 (IQR 0.81–0.99). Deep learning architectures achieved superior results, with area under the receiver operating characteristic curves up to 0.997. Major implementation challenges included incomplete electronic health record data capture, inconsistent clinical documentation practices, and limited external validation. While NLP demonstrates promise, successful clinical translation requires establishing standardized approaches, improving access to annotated datasets, and developing equitable deployment frameworks.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"84 3 1","pages":""},"PeriodicalIF":15.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01527-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

This systematic review evaluated natural language processing (NLP) approaches for detecting cognitive impairment in electronic health record clinical notes. Following PRISMA guidelines, we analyzed 18 studies (n = 1,064,530) that employed rule-based algorithms (67%), traditional machine learning (28%), and deep learning (17%). NLP models demonstrated robust performance in identifying cognitive decline, with median sensitivity 0.88 (IQR 0.74–0.91) and specificity 0.96 (IQR 0.81–0.99). Deep learning architectures achieved superior results, with area under the receiver operating characteristic curves up to 0.997. Major implementation challenges included incomplete electronic health record data capture, inconsistent clinical documentation practices, and limited external validation. While NLP demonstrates promise, successful clinical translation requires establishing standardized approaches, improving access to annotated datasets, and developing equitable deployment frameworks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电子健康记录的自然语言处理用于认知衰退的早期检测:系统综述
本系统性综述评估了在电子健康记录临床笔记中检测认知障碍的自然语言处理(NLP)方法。根据 PRISMA 指南,我们分析了 18 项研究(n = 1,064,530),这些研究采用了基于规则的算法(67%)、传统机器学习(28%)和深度学习(17%)。NLP 模型在识别认知能力下降方面表现出色,灵敏度中位数为 0.88(IQR 0.74-0.91),特异性中位数为 0.96(IQR 0.81-0.99)。深度学习架构取得了更优越的结果,接收者操作特征曲线下面积高达 0.997。实施过程中面临的主要挑战包括:电子健康记录数据采集不完整、临床文档实践不一致以及外部验证有限。虽然 NLP 前景看好,但成功的临床转化需要建立标准化的方法,改善对注释数据集的访问,并制定公平的部署框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
期刊最新文献
ScarElastic: continuous elasticity field modeling for myocardial scar delineation in LGE-CMR. Artificial intelligence-based personalized treatment strategies for unresectable hepatocellular carcinoma: integrating HSP90α for prognosis and survival prediction. Clinically informed semi-supervised learning improves disease annotation and equity from electronic health records: a glaucoma case study. Systematic review and meta-analysis of digital interventions for mental health in cancer patients and survivors. Multimodal deep learning for cancer prognosis prediction with clinical information prompts integration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1