Model-Free Predictive Current Control of PMSM With Online Current Gradient Updating Using Ultra-Local Model

IF 5.4 2区 工程技术 Q2 ENERGY & FUELS IEEE Transactions on Energy Conversion Pub Date : 2025-02-28 DOI:10.1109/TEC.2025.3546661
Hongfeng Li;Dehua Lan;Jianyu Shao;Muhammad Tahir
{"title":"Model-Free Predictive Current Control of PMSM With Online Current Gradient Updating Using Ultra-Local Model","authors":"Hongfeng Li;Dehua Lan;Jianyu Shao;Muhammad Tahir","doi":"10.1109/TEC.2025.3546661","DOIUrl":null,"url":null,"abstract":"Parameter mismatches can significantly degrade the control performance of model predictive current control (MPCC). To improve the parameter robustness of MPCC for permanent magnet synchronous motor (PMSM), this paper presents a model-free predictive current control algorithm based on online current gradient updates. First, an online current gradient update mechanism utilizing an ultra-local model is proposed, which effectively solves the stagnation issue associated with traditional current gradient update methods and eliminates error amplification caused by division operations. Furthermore, to handle the sensitivity of the voltage gain part in the conventional ultra-local model to inductance variations, a method is proposed to update both the voltage gain and dynamic parts of the ultra-local model in real-time using Kalman filtering. This method enhances the parameter robustness of model-free current prediction control. Finally, the proposed algorithm was simulated and experimentally validated, demonstrating the effectiveness of the control strategy.","PeriodicalId":13211,"journal":{"name":"IEEE Transactions on Energy Conversion","volume":"40 3","pages":"1898-1908"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Energy Conversion","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10907932/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Parameter mismatches can significantly degrade the control performance of model predictive current control (MPCC). To improve the parameter robustness of MPCC for permanent magnet synchronous motor (PMSM), this paper presents a model-free predictive current control algorithm based on online current gradient updates. First, an online current gradient update mechanism utilizing an ultra-local model is proposed, which effectively solves the stagnation issue associated with traditional current gradient update methods and eliminates error amplification caused by division operations. Furthermore, to handle the sensitivity of the voltage gain part in the conventional ultra-local model to inductance variations, a method is proposed to update both the voltage gain and dynamic parts of the ultra-local model in real-time using Kalman filtering. This method enhances the parameter robustness of model-free current prediction control. Finally, the proposed algorithm was simulated and experimentally validated, demonstrating the effectiveness of the control strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用超局部模型在线更新电流梯度的永磁同步电机无模型预测电流控制
参数不匹配会严重降低模型预测电流控制(MPCC)的控制性能。为了提高永磁同步电动机MPCC参数的鲁棒性,提出了一种基于在线电流梯度更新的无模型预测电流控制算法。首先,提出了一种利用超局部模型的在线电流梯度更新机制,有效解决了传统电流梯度更新方法存在的停滞问题,消除了除法运算带来的误差放大;此外,针对传统超局部模型中电压增益部分对电感变化的敏感性,提出了一种利用卡尔曼滤波实时更新超局部模型电压增益和动态部分的方法。该方法提高了无模型电流预测控制的参数鲁棒性。最后,对该算法进行了仿真和实验验证,验证了控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Energy Conversion
IEEE Transactions on Energy Conversion 工程技术-工程:电子与电气
CiteScore
11.10
自引率
10.20%
发文量
230
审稿时长
4.2 months
期刊介绍: The IEEE Transactions on Energy Conversion includes in its venue the research, development, design, application, construction, installation, operation, analysis and control of electric power generating and energy storage equipment (along with conventional, cogeneration, nuclear, distributed or renewable sources, central station and grid connection). The scope also includes electromechanical energy conversion, electric machinery, devices, systems and facilities for the safe, reliable, and economic generation and utilization of electrical energy for general industrial, commercial, public, and domestic consumption of electrical energy.
期刊最新文献
Nonlinear loss-minimizing control of induction motors with inherent constraint satisfaction Low Copper Loss High-Resistance Connection Fault Tolerant Method in Five-phase PMSM with Current and Voltage Reconfiguration Hybrid Cooling System with Water Plates and Potting for Outer-Rotor Low-Speed High-Torque PMSMs in Mining Belt Conveyors On the Application of the IEC 60034-2-1 Standard to Line-Start Synchronous Reluctance Motors A Novel Digital Twin for Diesel Generator in Microgrids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1