Microscopic roadmap to a Kitaev-Yao-Lee spin-orbital liquid

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY npj Quantum Materials Pub Date : 2025-03-01 DOI:10.1038/s41535-025-00744-9
Derek Churchill, Emily Z. Zhang, Hae-Young Kee
{"title":"Microscopic roadmap to a Kitaev-Yao-Lee spin-orbital liquid","authors":"Derek Churchill, Emily Z. Zhang, Hae-Young Kee","doi":"10.1038/s41535-025-00744-9","DOIUrl":null,"url":null,"abstract":"<p>The exactly solvable spin-1/2 Kitaev model on a honeycomb lattice has drawn significant interest, as it offers a pathway to realizing the long-sought-after quantum spin liquid. Building upon the Kitaev model, Yao and Lee introduced another exactly solvable model on an unusual star lattice featuring non-abelian spinons. The additional pseudospin degrees of freedom in this model could provide greater stability against perturbations, making this model appealing. However, a mechanism to realize such an interaction in a standard honeycomb lattice remains unknown. Here, we provide a microscopic theory to obtain the Yao-Lee model, on a honeycomb lattice by utilizing strong spin-orbit coupling of anions edge-shared between two <i>e</i><sub><i>g</i></sub> ions in the exchange processes. This mechanism leads to the desired bond-dependent interaction among spins rather than orbitals, unique to our model, implying that the orbitals fractionalize into gapless Majorana fermions and fermionic octupolar excitations emerge. Since the conventional Kugel-Khomskii interaction also appears, we examine the phase diagram, including these interactions, using classical Monte Carlo simulations and exact diagonalization techniques. Our findings reveal a broad region of disordered states that break rotational symmetry in the bond energy, suggesting intriguing behavior reminiscent of a spin-orbital liquid.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"33 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00744-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The exactly solvable spin-1/2 Kitaev model on a honeycomb lattice has drawn significant interest, as it offers a pathway to realizing the long-sought-after quantum spin liquid. Building upon the Kitaev model, Yao and Lee introduced another exactly solvable model on an unusual star lattice featuring non-abelian spinons. The additional pseudospin degrees of freedom in this model could provide greater stability against perturbations, making this model appealing. However, a mechanism to realize such an interaction in a standard honeycomb lattice remains unknown. Here, we provide a microscopic theory to obtain the Yao-Lee model, on a honeycomb lattice by utilizing strong spin-orbit coupling of anions edge-shared between two eg ions in the exchange processes. This mechanism leads to the desired bond-dependent interaction among spins rather than orbitals, unique to our model, implying that the orbitals fractionalize into gapless Majorana fermions and fermionic octupolar excitations emerge. Since the conventional Kugel-Khomskii interaction also appears, we examine the phase diagram, including these interactions, using classical Monte Carlo simulations and exact diagonalization techniques. Our findings reveal a broad region of disordered states that break rotational symmetry in the bond energy, suggesting intriguing behavior reminiscent of a spin-orbital liquid.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蜂巢晶格上可精确求解的自旋-1/2 基塔耶夫模型引起了人们的极大兴趣,因为它为实现人们长期追求的量子自旋液体提供了一条途径。在基塔耶夫模型的基础上,姚和李引入了另一个在不寻常的星形晶格上可精确求解的模型,其特点是非阿贝尔自旋子。该模型中额外的伪自旋自由度可以提供更高的抗扰动稳定性,从而使该模型更具吸引力。然而,在标准蜂巢晶格中实现这种相互作用的机制仍然未知。在此,我们提供了一种微观理论,通过在交换过程中利用两个eg 离子之间边缘共享的阴离子的强自旋轨道耦合,在蜂巢晶格上获得 Yao-Lee 模型。这种机制导致了我们模型所独有的自旋之间而非轨道之间的理想键依赖性相互作用,这意味着轨道分化为无间隙马约拉纳费米子,并出现了费米子八极激元。由于传统的库格尔-霍姆斯基(Kugel-Khomskii)相互作用也会出现,我们利用经典蒙特卡罗模拟和精确对角化技术研究了包括这些相互作用在内的相图。我们的研究结果揭示了打破键能旋转对称性的无序状态的广阔区域,暗示了令人联想到自旋轨道液体的有趣行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
期刊最新文献
Giant tunability of superlattice excitations in chiral Cr1/3TaS2 Microscopic roadmap to a Kitaev-Yao-Lee spin-orbital liquid Fate of transient order parameter domain walls in ultrafast experiments Ultrafast simultaneous manipulation of multiple ferroic orders through nonlinear phonon excitation Magnetic memory and distinct spin populations in ferromagnetic Co3Sn2S2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1