Ruthenium(II) Polypyridyl Complexes Inhibit Tumor Growth Through Stimulating Immune System to Increase CD8+ T Cell

IF 6 2区 医学 Q1 CHEMISTRY, MEDICINAL European Journal of Medicinal Chemistry Pub Date : 2025-02-28 DOI:10.1016/j.ejmech.2025.117470
Shuang Tian, Haixin Xu, Xiaoyu Wu, Yueyao Ding, Lijuan Liang, Hui Yin, Xiandong Zeng, Yunjun Liu, Wenrun Zhu
{"title":"Ruthenium(II) Polypyridyl Complexes Inhibit Tumor Growth Through Stimulating Immune System to Increase CD8+ T Cell","authors":"Shuang Tian, Haixin Xu, Xiaoyu Wu, Yueyao Ding, Lijuan Liang, Hui Yin, Xiandong Zeng, Yunjun Liu, Wenrun Zhu","doi":"10.1016/j.ejmech.2025.117470","DOIUrl":null,"url":null,"abstract":"In this work, we have carefully designed and synthesized two Ru(II) metal complexes: [Ru(phen)<sub>2</sub>(HMPIP)](PF<sub>6</sub>)<sub>2</sub> (<strong>6a</strong>, where phen = 1,10-phenanthroline, HMPIP = 2-(2-hydroxy-3-methylphenyl-1H-imidazo[4,5-f][1,10]phenanthroline) and [Ru(bpy)<sub>2</sub>(HMPIP)](PF<sub>6</sub>)<sub>2</sub> (<strong>6b</strong>, where bpy = 2,2’-bipyridine). Using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to explore the cytotoxicity of <strong>6a</strong> and <strong>6b</strong> towards HepG2, B16, A549, SGC-7901, HCT116 and non-cancer LO2. The complexes exhibited cytotoxicity activity against HepG2 cells. The capacity of <strong>6a</strong> and <strong>6b</strong> to impede the proliferation and dissemination of cancer cells was evaluated by conducting proliferation and migration experiments and 3D model. The anticancer mechanism was investigated in detail. The utilization of cycle blocking assays revealed that <strong>6a</strong> and <strong>6b</strong> induced a G0/G1 phase arrest in HepG2 cells. The cellular uptake experiments show that the complexes enter the cell nuclei, then escape from the cell nuclei into the cytoplasm, finally accumulate in the mitochondria. Apoptosis assays and the examination of proteins indicated that the complexes were capable of efficiently inducing apoptosis in HepG2 cells. Additionally, the potential induction of autophagy-mediated cell death was explored. The observed reduction in glutathione (GSH) levels and glutathione peroxidase 4 (GPX4) expression suggested a disruption of redox homeostasis within cancer cells, an increment in malondialdehyde (MDA) amount, together with BODIPY staining experiment, confirm that <strong>6a</strong> and <strong>6b</strong> can induce ferroptosis. Interestingly, in a nude mouse model, <strong>6a</strong> showed a significant suppression of tumor growth with an inhibition rate of 63.4%, without causing any weight loss of mice. The studies on the mechanism show that <strong>6a</strong> causes immune cell death, increase the amount of TNF-α and IFN-γ, reduce IL-10 content, which further activates immune response to increase CD8<sup>+</sup> T cells to prevent tumor growth. Therefore, <strong>6a</strong> inhibits the tumor growth through stimulating the immune response to increase CD8<sup>+</sup> T cells. In addition, the experiments in vitro show that the complexes through inhibition of PI3K/AKT/mTOR signaling pathway and intrinsic mitochondria pathway to cause cell apoptosis. These results demonstrate that Ru(II) complexes may be potent anticancer candidates for HepG2 tumor.","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"1 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmech.2025.117470","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we have carefully designed and synthesized two Ru(II) metal complexes: [Ru(phen)2(HMPIP)](PF6)2 (6a, where phen = 1,10-phenanthroline, HMPIP = 2-(2-hydroxy-3-methylphenyl-1H-imidazo[4,5-f][1,10]phenanthroline) and [Ru(bpy)2(HMPIP)](PF6)2 (6b, where bpy = 2,2’-bipyridine). Using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to explore the cytotoxicity of 6a and 6b towards HepG2, B16, A549, SGC-7901, HCT116 and non-cancer LO2. The complexes exhibited cytotoxicity activity against HepG2 cells. The capacity of 6a and 6b to impede the proliferation and dissemination of cancer cells was evaluated by conducting proliferation and migration experiments and 3D model. The anticancer mechanism was investigated in detail. The utilization of cycle blocking assays revealed that 6a and 6b induced a G0/G1 phase arrest in HepG2 cells. The cellular uptake experiments show that the complexes enter the cell nuclei, then escape from the cell nuclei into the cytoplasm, finally accumulate in the mitochondria. Apoptosis assays and the examination of proteins indicated that the complexes were capable of efficiently inducing apoptosis in HepG2 cells. Additionally, the potential induction of autophagy-mediated cell death was explored. The observed reduction in glutathione (GSH) levels and glutathione peroxidase 4 (GPX4) expression suggested a disruption of redox homeostasis within cancer cells, an increment in malondialdehyde (MDA) amount, together with BODIPY staining experiment, confirm that 6a and 6b can induce ferroptosis. Interestingly, in a nude mouse model, 6a showed a significant suppression of tumor growth with an inhibition rate of 63.4%, without causing any weight loss of mice. The studies on the mechanism show that 6a causes immune cell death, increase the amount of TNF-α and IFN-γ, reduce IL-10 content, which further activates immune response to increase CD8+ T cells to prevent tumor growth. Therefore, 6a inhibits the tumor growth through stimulating the immune response to increase CD8+ T cells. In addition, the experiments in vitro show that the complexes through inhibition of PI3K/AKT/mTOR signaling pathway and intrinsic mitochondria pathway to cause cell apoptosis. These results demonstrate that Ru(II) complexes may be potent anticancer candidates for HepG2 tumor.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
9.00%
发文量
863
审稿时长
29 days
期刊介绍: The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers. A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.
期刊最新文献
Synthesis and bioactivity of cyclic peptide GG-8-6 analogues as anti-hepatocellular carcinoma agents Epigenetic Targets and Their Inhibitors in the Treatment of Idiopathic Pulmonary Fibrosis Combination therapy and dual-target inhibitors based on cyclin-dependent kinases (CDKs): Emerging strategies for cancer therapy Corrigendum to “Ultra-short lipopeptides containing d-amino acid exhibiting excellent stability and antibacterial activity against Gram-positive bacteria” [Europ. J. Med. Chem. 287 (2025) 117341] Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1