Zhenhai Wen, Huibing Wang, Kai Chen, Zhiwen Lu, Shengjian Lin, Yalong Yuan, Xi Liu, Yu Zhang, Junxiang Chen
{"title":"Nonmetallic High-Entropy Engineered Nanocarbons for Advanced ORR Electrocatalysis","authors":"Zhenhai Wen, Huibing Wang, Kai Chen, Zhiwen Lu, Shengjian Lin, Yalong Yuan, Xi Liu, Yu Zhang, Junxiang Chen","doi":"10.1002/anie.202501290","DOIUrl":null,"url":null,"abstract":"High-entropy materials are poised to revolutionize materials science and industrial applications due to their design flexibility, peculiar performance, and broad applicability. In this study, we present a proof-of-concept high-entropy engineered nanocarbon (HENC) co-doped with five nonmetal elements (B, F, P, S, and N), synthesized via in-situ polymerization modification of ZIF-8 followed by pyrolysis. The HENC exhibits outstanding performance as a non-metal electrocatalyst for the oxygen reduction reaction (ORR), with activity on par with benchmark Pt/C electrocatalysts and superior cyclic stability. Simulations and all-site calculations reveal that the synergistic effects of abundant heteroatoms and increased system entropy facilitate the formation of *O2 species, with N, P, and S acting as the key active elements, while co-doping with B and F further enhances stability. Notably, HENCs have been validated as cathode catalysts in zinc-air batteries, achieving an impressive peak power density of 604 mW cm−2 and demonstrating long-term stability over a 16-day period, outpacing the commercial Pt/C catalyst (542 mW cm−2). This work not only enriches the concept of high entropy and advances the understanding of high-entropy materials but also opens a new avenue for the development of high-performance low-cost catalysts.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"27 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202501290","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-entropy materials are poised to revolutionize materials science and industrial applications due to their design flexibility, peculiar performance, and broad applicability. In this study, we present a proof-of-concept high-entropy engineered nanocarbon (HENC) co-doped with five nonmetal elements (B, F, P, S, and N), synthesized via in-situ polymerization modification of ZIF-8 followed by pyrolysis. The HENC exhibits outstanding performance as a non-metal electrocatalyst for the oxygen reduction reaction (ORR), with activity on par with benchmark Pt/C electrocatalysts and superior cyclic stability. Simulations and all-site calculations reveal that the synergistic effects of abundant heteroatoms and increased system entropy facilitate the formation of *O2 species, with N, P, and S acting as the key active elements, while co-doping with B and F further enhances stability. Notably, HENCs have been validated as cathode catalysts in zinc-air batteries, achieving an impressive peak power density of 604 mW cm−2 and demonstrating long-term stability over a 16-day period, outpacing the commercial Pt/C catalyst (542 mW cm−2). This work not only enriches the concept of high entropy and advances the understanding of high-entropy materials but also opens a new avenue for the development of high-performance low-cost catalysts.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.