Brain-like contour detector following Retinex theory and Gestalt perception grouping principles

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2025-02-26 DOI:10.1016/j.neucom.2025.129765
Rongtai Cai , Helin Que
{"title":"Brain-like contour detector following Retinex theory and Gestalt perception grouping principles","authors":"Rongtai Cai ,&nbsp;Helin Que","doi":"10.1016/j.neucom.2025.129765","DOIUrl":null,"url":null,"abstract":"<div><div>Numerous contour detection algorithms draw inspiration from biological vision systems. These algorithms imitate the way simple cells extract edges using Gabor filters. They also suppress edges generated by image textures simulating the non-classical receptive fields (NCRFs), thereby popping up the object contours within the image edges. However, these algorithms are not flawless and may yield imperfect results due to noise pollution, unsatisfactory lighting, limitations in image processing algorithms, and likewise. Weak strengths and pixel loss in contour segments are two common issues. In this paper, we provide two strategies to address these challenges. First, we separate the illumination component from the image following Retinex theory, extract the illumination contour using bio-inspired filters, and boost contour strengths by superimposing the illumination contour. Second, we complete object contours by filling small gaps in contours, using a proposed linking likelihood function that is a joint probability of element distance and orientation difference, following Gestalt perceptual grouping principles. Although not performance-oriented, the experimental results show that our endeavors improve the performance of bio-inspired contour detectors. More importantly, we demonstrate the significance of visual computation theories such as the Retinex theory and the Gestalt perception grouping principle for contour detection.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"633 ","pages":"Article 129765"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225004370","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous contour detection algorithms draw inspiration from biological vision systems. These algorithms imitate the way simple cells extract edges using Gabor filters. They also suppress edges generated by image textures simulating the non-classical receptive fields (NCRFs), thereby popping up the object contours within the image edges. However, these algorithms are not flawless and may yield imperfect results due to noise pollution, unsatisfactory lighting, limitations in image processing algorithms, and likewise. Weak strengths and pixel loss in contour segments are two common issues. In this paper, we provide two strategies to address these challenges. First, we separate the illumination component from the image following Retinex theory, extract the illumination contour using bio-inspired filters, and boost contour strengths by superimposing the illumination contour. Second, we complete object contours by filling small gaps in contours, using a proposed linking likelihood function that is a joint probability of element distance and orientation difference, following Gestalt perceptual grouping principles. Although not performance-oriented, the experimental results show that our endeavors improve the performance of bio-inspired contour detectors. More importantly, we demonstrate the significance of visual computation theories such as the Retinex theory and the Gestalt perception grouping principle for contour detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
许多轮廓检测算法都是从生物视觉系统中汲取灵感的。这些算法模仿简单细胞使用 Gabor 滤波器提取边缘的方式。它们还能抑制由图像纹理模拟非经典感受野(NCRF)产生的边缘,从而在图像边缘中弹出物体轮廓。然而,这些算法并非完美无瑕,可能会因噪声污染、不理想的光线、图像处理算法的局限性等原因而产生不完美的结果。轮廓段的强度较弱和像素丢失是两个常见问题。在本文中,我们提供了两种策略来应对这些挑战。首先,我们根据 Retinex 理论从图像中分离出光照部分,利用生物启发滤波器提取光照轮廓,并通过叠加光照轮廓来增强轮廓强度。其次,我们根据格式塔感知分组原理,利用所提出的链接似然函数(即元素距离和方向差异的联合概率),通过填补轮廓中的小缝隙来完善物体轮廓。尽管实验结果并不以性能为导向,但它表明我们的努力改善了生物启发轮廓检测器的性能。更重要的是,我们证明了 Retinex 理论和格式塔感知分组原理等视觉计算理论对于轮廓检测的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Editorial Board Momentum gradient-based untargeted poisoning attack on hypergraph neural networks Memo-UNet: Leveraging historical information for enhanced wave height prediction LN-DETR: An efficient Transformer architecture for lung nodule detection with multi-scale feature fusion CMGN: Text GNN and RWKV MLP-mixer combined with cross-feature fusion for fake news detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1