Multi-view clustering via view-specific consensus kernelized graph learning

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2025-02-22 DOI:10.1016/j.neucom.2025.129766
Bing Hu , Tong Wu , Lixin Han , Shu Li , Yi Xu , Gui-fu Lu
{"title":"Multi-view clustering via view-specific consensus kernelized graph learning","authors":"Bing Hu ,&nbsp;Tong Wu ,&nbsp;Lixin Han ,&nbsp;Shu Li ,&nbsp;Yi Xu ,&nbsp;Gui-fu Lu","doi":"10.1016/j.neucom.2025.129766","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-view clustering has received extensive and in-depth research attention in recent years owing to its ability to reflect the nature of the real world from multiple perspectives. Kernel-based methods and subspace learning-based methods are two important categories of multi-view clustering. Compared with subspace-based algorithms, kernel-based algorithms can better address nonlinear relationships in feature spaces. However, the current kernel-based algorithms focus mainly on the diversity of different kernels, and obtaining the optimal kernel via linear combinations of multiple kernels, ignoring the cross-view information and space information in the original feature spaces. To address this issue, our paper proposes a novel algorithm named MC-VCKGL. Specifically, we first obtain view-specific consensus kernelized graphs of each view through kernel-based self-representation learning and by using the kernel trick. Moreover, Laplacian constraints are applied to maintain smoothness in the raw feature space of each view. We stack these kernelized graphs together to obtain a tensor, and then rotate this tensor and apply tensor nuclear norm constraints. As a result, the cross-view complementary information can be explored. We apply our algorithm to seven open datasets, including both text and image datasets. Experiments show that our method outperforms most state-of-the-art multi-view clustering algorithms.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"633 ","pages":"Article 129766"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225004382","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-view clustering has received extensive and in-depth research attention in recent years owing to its ability to reflect the nature of the real world from multiple perspectives. Kernel-based methods and subspace learning-based methods are two important categories of multi-view clustering. Compared with subspace-based algorithms, kernel-based algorithms can better address nonlinear relationships in feature spaces. However, the current kernel-based algorithms focus mainly on the diversity of different kernels, and obtaining the optimal kernel via linear combinations of multiple kernels, ignoring the cross-view information and space information in the original feature spaces. To address this issue, our paper proposes a novel algorithm named MC-VCKGL. Specifically, we first obtain view-specific consensus kernelized graphs of each view through kernel-based self-representation learning and by using the kernel trick. Moreover, Laplacian constraints are applied to maintain smoothness in the raw feature space of each view. We stack these kernelized graphs together to obtain a tensor, and then rotate this tensor and apply tensor nuclear norm constraints. As a result, the cross-view complementary information can be explored. We apply our algorithm to seven open datasets, including both text and image datasets. Experiments show that our method outperforms most state-of-the-art multi-view clustering algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Editorial Board Momentum gradient-based untargeted poisoning attack on hypergraph neural networks Memo-UNet: Leveraging historical information for enhanced wave height prediction LN-DETR: An efficient Transformer architecture for lung nodule detection with multi-scale feature fusion CMGN: Text GNN and RWKV MLP-mixer combined with cross-feature fusion for fake news detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1