Virtual try-on with Pose-Aware diffusion models

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Visual Communication and Image Representation Pub Date : 2025-02-26 DOI:10.1016/j.jvcir.2025.104424
Taenam Park, Seoung Bum Kim
{"title":"Virtual try-on with Pose-Aware diffusion models","authors":"Taenam Park,&nbsp;Seoung Bum Kim","doi":"10.1016/j.jvcir.2025.104424","DOIUrl":null,"url":null,"abstract":"<div><div>Image-based virtual try-on (VTON) refers to the task of synthesizing realistic images of a person wearing a target garment based on reference images. Existing approaches use diffusion models that demonstrate outstanding performance in image synthesis tasks but often fail in preserving the pose and body features of the reference person in certain cases. To address these limitations, we propose Pose-Aware Virtual Try-ON (PA-VTON), a methodology that uses a pretrained diffusion-based VTON framework and additional modules that specify in preserving the information of a person’s attributes. Our proposed module, PoseNet, adds spatial conditioning controls to the VTON process to enhance pose consistency preservation. Experimental results on two benchmark datasets demonstrate that our proposed method quantitatively improves image synthesis performance while qualitatively resolving issues such as ghosting effects and improper generation of body parts that previous methods struggled with.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"108 ","pages":"Article 104424"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320325000380","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Image-based virtual try-on (VTON) refers to the task of synthesizing realistic images of a person wearing a target garment based on reference images. Existing approaches use diffusion models that demonstrate outstanding performance in image synthesis tasks but often fail in preserving the pose and body features of the reference person in certain cases. To address these limitations, we propose Pose-Aware Virtual Try-ON (PA-VTON), a methodology that uses a pretrained diffusion-based VTON framework and additional modules that specify in preserving the information of a person’s attributes. Our proposed module, PoseNet, adds spatial conditioning controls to the VTON process to enhance pose consistency preservation. Experimental results on two benchmark datasets demonstrate that our proposed method quantitatively improves image synthesis performance while qualitatively resolving issues such as ghosting effects and improper generation of body parts that previous methods struggled with.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用姿态感知扩散模型进行虚拟试穿
基于图像的虚拟试穿(VTON)是指在参考图像的基础上合成穿着目标服装的人的真实图像的任务。现有方法使用的扩散模型在图像合成任务中表现出色,但在某些情况下往往不能保留参考人的姿势和身体特征。为了解决这些限制,我们提出了姿态感知虚拟试戴(PA-VTON),这是一种使用预训练的基于扩散的VTON框架和指定保留人的属性信息的附加模块的方法。我们提出的模块PoseNet在VTON过程中增加了空间调节控制,以增强姿态一致性保存。在两个基准数据集上的实验结果表明,我们提出的方法定量地提高了图像合成性能,同时定性地解决了先前方法难以解决的重影效应和身体部位生成不当等问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
期刊最新文献
Mitigating bias in Few Shot Class Incremental Learning with Feature Augmentation and Logits Mix-up FFTDiff: Tuning-free image texture transfer based on diffusion model Infrared remote sensing small ship target detection method based on spatial-semantic enhancement and feature reconstruction neck CAE-Net: Generalized deepfake image detection using convolution and attention mechanisms with spatial and frequency domain features Multi-view 3D model recognition via multi-label and multi-level fusion with bidirectional GRU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1